二叉树
定义
树是n(n >= 0)个节点的有限集,且这些节点满足如下关系:
(1)有且仅有一个节点没有父节点,该节点称为根。
(2)除根外,其余的每个节点都有且仅有一个父节点。
(3)树中的每一个节点都构成一个以它为根的树。
二叉树在满足树的条件时,满足如下条件:
每个节点最多有两个孩子(子树),这两个子树有左右之分,次序不可颠倒。
如下图所示:
二叉树结构构造代码如下:
struct TreeNode{
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
二叉树的深度遍历
其深度遍历分为三种方式:
①前序遍历——(父节点->左节点->右节点)
②中序遍历——(左节点->父节点->右节点)
③后序遍历——(左节点->右节点->父节点)
这里的前、中、后的判断标准主要是按根节点的遍历前后顺序,而如果反映在代码上,则是对应节点操作时的前后顺序而看出。(如下图所示)
代码的操作如下:
//前序遍历
void traversal_print3(TreeNode *node,int layer){
if (!node){
return;
}
for (int i = 0; i < layer; i++){
printf("-----");
}
printf("[%d]\n", node->val);
traversal_print3(node->left, layer + 1);
traversal_print3(node->right, layer + 1);
}
//中序遍历
void traversal_print1(TreeNode *node,int layer){
if (!node){
return;
}
traversal_print1(node->left, layer + 1);
for (int i = 0; i < layer; i++){
printf("-----");
}
printf("[%d]\n", node->val);
traversal_print1(node->right, layer + 1);
}
//后序遍历
void traversal_print2(TreeNode *node,int layer){
if (!node){
return;
}
traversal_print2(node->left, layer + 1);
traversal_print2(node->right, layer + 1);
for (int i = 0; i < layer; i++){
printf("-----");
}
printf("[%d]\n", node->val);
}
层次遍历(宽度优先搜索)
定义
按树的层次依次访问树的节点。层次遍历使用队列对遍历节点进行存储,先进入队列的节点,优先遍历扩展其左右孩子与右孩子。(如下图所示)
完成其代码格式如下:
实现代码如下:
void BFS_print(TreeNode* root){
queue<TreeNode*> Q;
Q.push(root);
while(!Q.empty()){
TreeNode* node = Q.front();
Q.pop();
printf("[%d]\n", node->val);
if(node->left){
Q.push(node->left);
}
if(node->right){
Q.push(node->right);
}
}
}
致谢
本章知识点和思路由小象学院相关视频提供,由本人学习并梳理得出,希望自己加深记忆的同时,也能给大家提供更多有关于一些算法的知识点。
你的点赞、评论、收藏就是对我最大的支持与鼓励,谢谢!