二叉树的基础知识(定义、深度搜索的三种方式和宽度优先搜索)

二叉树

定义

是n(n >= 0)个节点的有限集,且这些节点满足如下关系:
(1)有且仅有一个节点没有父节点,该节点称为
(2)除根外,其余的每个节点都有且仅有一个父节点
(3)树中的每一个节点都构成一个以它为根的树。

二叉树在满足树的条件时,满足如下条件:
每个节点最多有两个孩子(子树),这两个子树有左右之分,次序不可颠倒。
如下图所示:

二叉树结构构造代码如下:

struct TreeNode{
	int val;
	TreeNode *left;
	TreeNode *right;
	TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

二叉树的深度遍历

其深度遍历分为三种方式:
①前序遍历——(父节点->左节点->右节点)
②中序遍历——(左节点->父节点->右节点)
③后序遍历——(左节点->右节点->父节点)

这里的前、中、后的判断标准主要是按根节点的遍历前后顺序,而如果反映在代码上,则是对应节点操作时的前后顺序而看出。(如下图所示)

代码的操作如下:

//前序遍历
void traversal_print3(TreeNode *node,int layer){
	if (!node){
		return;
	}
	for (int i = 0; i < layer; i++){
		printf("-----");
	}
	printf("[%d]\n", node->val);
	traversal_print3(node->left, layer + 1);
	traversal_print3(node->right, layer + 1);
}

//中序遍历
void traversal_print1(TreeNode *node,int layer){
	if (!node){
		return;
	}
	traversal_print1(node->left, layer + 1);
	for (int i = 0; i < layer; i++){
		printf("-----");
	}
	printf("[%d]\n", node->val);
	traversal_print1(node->right, layer + 1);
}

//后序遍历
void traversal_print2(TreeNode *node,int layer){
	if (!node){
		return;
	}
	traversal_print2(node->left, layer + 1);
	traversal_print2(node->right, layer + 1);
	for (int i = 0; i < layer; i++){
		printf("-----");
	}
	printf("[%d]\n", node->val);
}

层次遍历(宽度优先搜索)

定义

按树的层次依次访问树的节点。层次遍历使用队列对遍历节点进行存储,先进入队列的节点,优先遍历扩展其左右孩子与右孩子。(如下图所示)

完成其代码格式如下:

实现代码如下:

void BFS_print(TreeNode* root){
	queue<TreeNode*> Q;
	Q.push(root);
	while(!Q.empty()){
		TreeNode* node = Q.front();
		Q.pop();
		printf("[%d]\n", node->val);
		if(node->left){
			Q.push(node->left);
		}
		if(node->right){
			Q.push(node->right);
		}
	}
}

致谢

本章知识点和思路由小象学院相关视频提供,由本人学习并梳理得出,希望自己加深记忆的同时,也能给大家提供更多有关于一些算法的知识点。
你的点赞、评论、收藏就是对我最大的支持与鼓励,谢谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值