【文献阅读】自动化构音障碍严重程度分类:声学特征与深度学习技术的研究

自动化构音障碍严重程度分类:声学特征与深度学习技术的研究

原文直达传送门Automated Dysarthria Severity Classification:A Study on Acoustic Features and Deep Learning Techniques

思维导图

在这里插入图片描述

摘要

  • 评估构音障碍的严重程度可以提供患者改善的见解,并协助治疗计划的制定。
  • 本研究比较了使用各种深度学习架构和声学特征的构音障碍严重程度分类。
  • 评估的架构包括:DNN、CNN、GRU 和 LSTM,使用基本特征如 MFCC 和 CQCC。
  • 分析了来自韵律、发音、音质和声门功能的演讲障碍特定特征。
  • 探索通过 i-向量实现低维特征表示,并使用 DNN 进行分类。
  • 在说话者依赖情况中实现了 93.97% 的准确率,而在说话者独立情况下实现了 49.22% 的准确率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

帅小柏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值