点击跳转
《Numpy入门系列目录》
-
numpy.cov(m, y=None, rowvar=True)
- m: array_like,包含多个变量和观测值的1-D或2-D数组,m的每一行代表一个变量,每一列都是对所有这些变量的单一观察。
- y: array_like, 可选,另外一组变量和观察,y具有与m相同的形状。
- rowvar: bool, 可选,如果rowvar为True(默认值),则每行代表一个变量X,另一个行为变量Y。否则,转换关系:每列代表一个变量X,另一个列为变量Y。
-
功能:给定数据和权重,估计协方差矩阵。返回变量的协方差矩阵
-
例子
import numpy as np A = np.array([[0, 2], [1, 1], [2, 0]]).T print(A) # [[0 1 2][2 1 0]] B = np.cov(A) # 默认行为变量计算方式,即X为行,Y也为行 print(B) # [[ 1. -1.][-1. 1.]] C = np.cov(A, rowvar=False) # 此时列为变量计算方式 即X为列,Y也为列 print(C) # [[ 2. 0. -2.][ 0. 0. 0.][-2. 0. 2.]]