Numpy入门(十):np.cov()用法

点击跳转
《Numpy入门系列目录》


  • numpy.cov(m, y=None, rowvar=True)

    • m: array_like,包含多个变量和观测值的1-D或2-D数组,m的每一行代表一个变量,每一列都是对所有这些变量的单一观察。
    • y: array_like, 可选,另外一组变量和观察,y具有与m相同的形状。
    • rowvar: bool, 可选,如果rowvar为True(默认值),则每行代表一个变量X,另一个行为变量Y。否则,转换关系:每列代表一个变量X,另一个列为变量Y。
  • 功能:给定数据和权重,估计协方差矩阵。返回变量的协方差矩阵

  • 例子

    import numpy as np
    A = np.array([[0, 2], [1, 1], [2, 0]]).T
    print(A)  						# [[0 1 2][2 1 0]]
    B = np.cov(A)  					# 默认行为变量计算方式,即X为行,Y也为行
    print(B)  						# [[ 1. -1.][-1.  1.]]
    C = np.cov(A, rowvar=False)     # 此时列为变量计算方式 即X为列,Y也为列
    print(C)  						# [[ 2.  0. -2.][ 0.  0.  0.][-2.  0.  2.]]
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值