CS224W2.3——传统基于特征的方法(图层级特征)

前两篇中我们讨论了节点层级的特征表示、边层级的特征表示:

在这篇中,我们将重点从整个图中提取特征。换句话说,我们想要描述整个图结构的特征。具体来说,我们感兴趣的是测量两个图之间相似性的图核方法。我们将描述提取这种图核的不同方法,包括Graphlet特性和WL核。

1. 目标

目标是:我们想要一个特征来描述整个图的结构。
在这里插入图片描述

2. Kernel Methods

在这里插入图片描述

这种核方法广泛应用于传统的图层级预测上。

这种方法的思想是:设计核(kernels)代替特征向量。

核矩阵 K = ( K ( G , G ′ ) ) K=(K(G,G')) K=(K(G,G))必须有正的特征值,可以表示为两个向量的乘积。

2.1 Graph Kernel的作用

在这里插入图片描述

Graph Kernels可以去计算两个图的相似程度。

这里应该要讲两种:

  • Graphlet Kernel
  • Weisfeiler-Lehman Kernel

2.2 Graph Kernel的核心思想

在这里插入图片描述

内核目标的关键思想是定义一个特征向量 ϕ ( G ) \phi(G) ϕ(G)

我们将这个特征向量 ϕ ( G ) \phi(G) ϕ(G)作为图的词袋(bag-of-words)类型表示。

其中词袋(bag-of-words)是:当我们有文本文档时,我们表示文本文档的一种方式,就是简单地将其表示为一袋单词。基本上我们会说,对于每个单词,我们记录该单词在文档中出现的频率。我们可以考虑,比如,按字母顺序排序的单词,然后,你知道,在这个词袋表示的位置i,我们会得到单词i在文档中出现的频率,出现的次数。

同样地,把这个想法简单地推广到图中就是把节点看作词。

问题是:由于图的结构可能非常不同,但节点数量相同,我们会得到相同的特征向量,或者两个不同图的相同表示。

在这里插入图片描述

2.3 Graphlets Kernel

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

一些问题:

在这里插入图片描述

2.4 Weisfeiler-Lehman Kernel

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

WL Kernel的方法时间复杂度与边数成线性关系,说明他效率比较高。

3. 总结

在这里插入图片描述

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值