最短路-朴素dijkstra(基础算法)

8 篇文章 0 订阅

最短路–单源最短路–权为正,稠密图(邻接矩阵)–朴素dijkstra求

在这里插入图片描述
源点:起点 汇点:终点
单源最短路,eg:从1号点到n号点最短路
n:点的数量 m:边的数量

朴素Dijkstra:稠密图 n m <1e5 (贪心)
堆优化Dijkstra:稀疏图
SPFA是Bellman-ford算法+(离散数学)的优化,但是对边数进行限制(m<k)就只能用Bellman-Ford算法(动态规划)

难点:把问题抽象想成最短–建图
无向图是一种特殊的有向图


在这里插入图片描述

题目
给定一个n个点m条边的有向图,图中可能存在重边和自环,所有边权均为正值。

请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出-1。

输入格式
第一行包含整数n和m。
接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。

输出格式
输出一个整数,表示1号点到n号点的最短距离。
如果路径不存在,则输出-1。

数据范围
1 ≤ n ≤ 500
1≤m≤10^5
图中涉及边长均不超过10000

样例输入1
3 3
1 2 2
2 3 1
1 3 4
样例输出1
3

重边:只保留最短的一条边

#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;

const int N = 510;//多与点的数量

int n,m;//点,边
int g[N][N];//结点的权重
int dist[N];//最短距离
bool st[N];//最短距离是否确定

int dijkstra()
{
    //初始化
    memset(dist,0x3f,sizeof dist);//求最短路,默认距离为最大值(INF)
    dist[1]=0;//起点的最短距离为0

    for(int i=0; i<n; i++)//n个点循环n遍
    {
        int t = -1;//第一遍t=1,确定第一个结点是最短状态(0到其他点是INF),再用第一个结点更新从第一个结点到其他结点的距离
                   //第二遍点1到其他点的距离都确定了,以除1意外的点都可以做起点
        //确定距离起点最短的点
        for(int j=1;j<=n;j++)//找到st=false && dist最小的点
        
            if(!st[j] &&(t==-1||dist[t]>dist[j]))
                t=j;
        
        st[t] = true;//最短状态确定
        for(int j = 1;j <= n; j ++)//用点t更新t到其他点的距离
            dist[j] = min(dist[j],dist[t]+g[t][j]);
    }
    if(dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}
int main()
{
    cin>>n>>m;
    memset(g, 0x3f, sizeof g);//边长默认最大

    for(int i=0;i<m;i++)//输入方向与权重(边长)
    {
        int a,b,c;
        cin>>a>>b>>c;
        g[a][b]=min(g[a][b],c);//最短路--重边只取最短边
    }

    cout<< dijkstra() <<endl;//最短路--单源最短路--权为正,稠密图(邻接矩阵)--朴素dijkstra求

    return 0;
}

Dijkstra总结:

  1. 初始化距离
  2. n个点循环n次,每次确定一个状态最短的点
  3. 标记该点已经是最短状态
  4. 用该点更新它到其他各个点的状态
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Dijkstra算法是一种用于解决单源最短路径问题的算法。它的基本思想是从起点开始,逐步扩展到其他节点,每次选择当前距离起点最近的节点,并更新与该节点相邻的节点的距离。通过这种方式,可以找到起点到其他节点的最短路径。Dijkstra算法的时间复杂度为O(n^2),但是可以通过使用堆优化来将其优化到O(nlogn)。 ### 回答2: Dijkstra算法是一种解决单源最短路径问题的贪心算法,其思想是利用“松弛”操作来不断更新当前点到源点的最短距离,但前提是所有边的权重非负。如果有负权边,则需要使用Bellman-Ford算法。 首先,我们需要定义一个数组dis数组,用于存储源点s到各个点的最短距离。dis[s]初始为0,其他点初始为无限大。接着,我们需要维护一个集合S,表示已经求出最短路径的点的集合。将源点s加入集合S中。 对于每个未加入S的点v,我们通过选择其它点到源点s的最短路径中的一个点u,然后将dis[v]更新为dis[u] + w(u,v),其中w(u,v)表示边(u,v)的权重。具体地,这个操作称为“松弛”操作。 在松弛操作中,我们需要比较dis[u] + w(u,v)和dis[v]的大小,如果前者更小,则更新dis[v]的值为dis[u] + w(u,v)。 重复执行以上操作,直到所有的点都加入到集合S中。最后dis数组中存储的就是源点s到所有点的最短距离。 Dijkstra算法可以用堆优化,时间复杂度为O(mlogn),其中n表示图中的点数,m表示边数。Dijkstra算法也可以应用于稠密图,时间复杂度为O(n^2)。 总之,Dijkstra算法是一种经典的求解单源最短路径问题的算法,其实现简单,效率高,被广泛应用于路由算法和图像处理等领域。 ### 回答3: Dijkstra算法是一种在加权有向图中寻找从源节点到其他节点的最短路径的贪心算法。该算法基于其它路径加权节点的已知最短路径去更新更长路径的信息直到找到从源节点到目标节点的最短路径。在整个计算过程中,Dijkstra算法需要维护一个待处理节点集合和一个距离源节点的最短路径数组。 算法的具体实现如下: 1. 初始化源节点及其距离为0,其他节点的距离为无穷大。 2. 将源节点加入到待处理节点集合中。 3. 对于源节点的所有相邻节点,更新它们距离源节点的最短路径。如果当前路径小于之前已知的最短路径,则更新最短路径数组。 4. 遍历待处理节点集合中除源节点外的节点,选择距离最近的节点作为当前节点,并将它从待处理机集合中移除。 5. 对于当前节点的所有相邻节点,更新它们距离源节点的最短路径。如果当前路径小于之前已知的最短路径,则更新最短路径数组。 6. 重复步骤4和5,直到待处理节点集合为空或者目标节点已经被遍历。 Dijkstra算法的时间复杂度为O(n^2),其中n为节点数,由于它是贪心算法,只能处理非负权重的图,否则可能会陷入死循环。但是,Dijkstra算法是单源最短路径问题的最优解,因此在处理小规模的图时效果很好。在处理大规模图时,需要使用其他高效的算法,如A*算法、Bellman-Ford算法等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值