一、环境准备
1.硬件要求
最低配置:
CPU: 8核+
内存: 16GB+
*供参考:
- 1.5B:中央处理器最低4核,内存8GB+,硬盘图标3GB+存储空间,显卡图标若图形处理器加速可选4 GB+显存,适合低资源设备部署等场景。非必需,
- 7B:中央处理器8核以上,内存16GB+,硬盘8GB+,显卡推荐8 GB+显存,可用于本地开发测试等场景。
- 8B:硬件需求与7B相近略高,适合需更高精度的轻量级任务。
- 14B:CPU 12核以上,内存32GB+,硬盘15GB+,显卡16GB+显存,可用于企业级复杂任务等场景。
- 32B:中央处理器16核以上,内存64GB+,硬盘30 GB+,显卡24 GB+显存,适合高精度专业领域任务等场景。
-
70B:中央处理器32核以上,内存128GB+,硬盘70GB+,显卡需多卡并行,适合科研机构等进行高复杂度生成任务等场景。
2.软件要求
操作系统:Linux。
二、安装deepseek
1.下载ollama
打开ollama官网选择linux
在服务器上使用以下命令安装:
1. curl -fsSL https://ollama.com/install.sh | sh |
安装完成后,验证安装:
2. ollama --version |
如果输出版本号,则说明安装成功
2.下载deep seek
使用如下命令来下载:(以7b版本为例,其他版本同理)
1. ollama run deepseek-r1:7b |
一般速度会有点慢,可以考虑加个镜像站(例如:https://pypi.tuna.tsinghua.edu.cn/simple/),
出现“success”表明下载成功。
3.测试与验证
下载好后,再次运行刚刚的命令,即可与其进行对话(如图):
三、交互UI:open web ui
使用命令行与deepseek交互相对不够直观,可以安装open web ui进行交互
首先可以创建一个新的conda环境,并指定Python版本:
- conda create -n open-webui-env python=3.11
- conda activate open-webui-env
- pip install open-webui
随后,启动open-webui服务
- open-webui serve
启动成功后,在浏览器
http://00.00.0.000(替换为你的服务器地址):8080/(例如:http://10.13.6.180:8080/)
左上角可以随意切换解释器模型进行体验。
四、modelscope(魔搭社区)
1.下载
modelscope下载的模型一般都是有微调过,有需要的可以参考。
首先自行编写一个下载模型的.py文件;这里以download_model.py为例。
下载命令:
nohup python download_model.py > download_model.log 2>&1 &
2.导入并启动
先进入指定目录(例如.cd /data/my_materials/LLM_models/)
1、创建Modelfile(可用vim, 名字可自定义), 内容如下
- vim model_file(自定义)
- FROM <model_file.gguf>
例如:
- Vim DeepSeek-R1-Distill-Qwen-14B-Q4_K_M
- From ./DeepSeek-R1-Distill-Qwen-14B-Q4_K_M.gguf
(i为插入,esc切换,:wq退出)
2、导入模型
- ollama create <model_name> -f Modelfile
- ollama create <model_name:7b> -f Modelfile #默认版本是latest, 加冒号可指定版本号
- eg.ollama create "DeepSeek-R1-Distill-Qwen-14B-Q4_K_M" -f "DeepSeek-R1-Distill-Qwen-14B-Q4_K_M"(需要添加引号)
见到success表明导入成功
3、启动模型
ollama run <model_name>
即可。
ps:一些ollama的命令
- ollama serve 开始ollama
- ollama create 创建一个模型
- ollama run 运行模型
- ollama list 模型列表
- ollama ps 正在运行的模型列表
- ollama rm 移除模型