1.递归实现指数型枚举
从 1∼n 这 n 个整数中随机选取任意多个,输出所有可能的选择方案。
输入格式
输入一个整数 n。
输出格式
每行输出一种方案。
同一行内的数必须升序排列,相邻两个数用恰好 1 个空格隔开。
对于没有选任何数的方案,输出空行。
本题有自定义校验器(SPJ),各行(不同方案)之间的顺序任意。
数据范围
1≤n≤15
输入样例:
3
输出样例:
3
2
2 3
1
1 3
1 2
1 2 3
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 16;
bool st[N];
void dfs(int i)
{
if (i == 3)
{
for (int i = 1; i <= 3; i++)
{
if (st[i] == true)
cout << i << " ";
}
cout << endl;
return;
}
st[i] = true;
dfs(i + 1);
st[i] = false; //回溯
st[i] = false;
dfs(i + 1);
st[i] = false; //回溯
return;
}
int main()
{
dfs(1);
return 0;
}
2.递归实现排列类型枚举
把 1∼n 这 n 个整数排成一行后随机打乱顺序,输出所有可能的次序。
输入格式
一个整数 n。
输出格式
按照从小到大的顺序输出所有方案,每行 1 个。
首先,同一行相邻两个数用一个空格隔开。
其次,对于两个不同的行,对应下标的数一一比较,字典序较小的排在前面。
数据范围
1≤n≤9
输入样例:
3
输出样例:
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
代码
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
const int N = 10;
int q[N];
bool st[N];
int n;
/*
这里有两种递归方案
方案1:
将每个数字排列在不同的位置上
方案2:
在每个位置上排列不同的数
这里选择方案2
*/
void dfs(int i)
{
if (i > n)
{
for (int j = 1; j <= n; j++)
cout << q[j] << " ";
cout << endl;
return;
}
for (int j = 1; j <= n; j++)
{
if (st[j] == false)
{
q[i] = j;
st[j] = true;
dfs(i + 1);
st[j] = false;
}
}
}
int main()
{
cin >> n;
dfs(1);
return 0;
}
这次看到这两道题已经是二刷了
这里的两道题都是递归递推的经典题,都体现了DFS+回溯的思想。
需要切记在DFS回溯的时候要还原现场,另外,如果考试时想不通递归的路径,可以尝试画出搜索树。