蓝桥杯学习笔记<7> 递归,递推与DFS

1.递归实现指数型枚举
从 1∼n 这 n 个整数中随机选取任意多个,输出所有可能的选择方案。

输入格式
输入一个整数 n。

输出格式
每行输出一种方案。

同一行内的数必须升序排列,相邻两个数用恰好 1 个空格隔开。

对于没有选任何数的方案,输出空行。

本题有自定义校验器(SPJ),各行(不同方案)之间的顺序任意。

数据范围
1≤n≤15
输入样例:
3
输出样例:

3
2
2 3
1
1 3
1 2
1 2 3

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

const int N = 16;
bool st[N];

void dfs(int i)
{
	if (i == 3)
	{
		for (int i = 1; i <= 3; i++)
		{
			if (st[i] == true)
				cout << i << " ";
		}
		cout << endl;
		return;
	}

	st[i] = true;
	dfs(i + 1);
	st[i] = false;  //回溯

	st[i] = false;
	dfs(i + 1);
	st[i] = false;  //回溯
	return;
}

int main()
{
	dfs(1);
	return 0;
}

2.递归实现排列类型枚举
把 1∼n 这 n 个整数排成一行后随机打乱顺序,输出所有可能的次序。

输入格式
一个整数 n。

输出格式
按照从小到大的顺序输出所有方案,每行 1 个。

首先,同一行相邻两个数用一个空格隔开。

其次,对于两个不同的行,对应下标的数一一比较,字典序较小的排在前面。

数据范围
1≤n≤9
输入样例:
3
输出样例:
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
代码

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;

const int N = 10;
int q[N];
bool st[N];
int n;

/*
这里有两种递归方案
方案1:
	将每个数字排列在不同的位置上

方案2:
	在每个位置上排列不同的数
这里选择方案2
	
*/

void dfs(int i)
{
	if (i > n)
	{
		for (int j = 1; j <= n; j++)
			cout << q[j] << " ";
		cout << endl;
		return;
	}

	for (int j = 1; j <= n; j++)
	{
		if (st[j] == false)
		{
			q[i] = j;
			st[j] = true;
			dfs(i + 1);
			st[j] = false;
		}
	}
}

int main()
{
	cin >> n;
	dfs(1);
	return 0;

}

这次看到这两道题已经是二刷了
这里的两道题都是递归递推的经典题,都体现了DFS+回溯的思想。
需要切记在DFS回溯的时候要还原现场,另外,如果考试时想不通递归的路径,可以尝试画出搜索树。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值