python 3.12.7 降级到 3.10.0

先将Python 3.12.7 降级到 3.10.0,然后将3.10.0版本设置为默认版本

步骤一:

要将 Python 从 3.12.7 降级到 3.10.0,你可以使用以下方法:

方法 1:从 Python 官方网站下载并安装(推荐)

  1. 前往 Python 3.10.0 的下载页面

  2. 下载适合 macOS 的安装包(如 .pkg 文件),然后按照安装向导进行安装。

  3. 安装完成后,使用以下命令来验证 Python 版本:

    /usr/local/bin/python3.10 --version

 方法 2:使用 pyenv

如果 pyenv 已经安装,可以很方便地安装和切换到特定的 Python 版本。

  1. 安装 Python 3.10.0:

    pyenv install 3.10.0
  2. 设置 Python 3.10.0 为全局默认版本:

    pyenv global 3.10.0
    
  3. 验证当前的 Python 版本:

    python --version
    

如果系统中已有其他版本的 Python,可以使用完整路径 /usr/local/bin/python3.10 来指定 Python 3.10。

步骤二:

既然你已经安装了 Python 3.10.0,现在将它设置为默认版本。以下是几种方法:

方法 1:更新 Shell 配置文件

  1. 将 Python 3.10 设置为默认 Python 版本。打开你的 shell 配置文件(例如 ~/.bash_profile~/.zshrc):

    nano ~/.bash_profile # 或 nano ~/.zshrc
  2. 进入编辑器后,直接在最后面,添加以下行,将 Python 3.10 设为默认版本:

    alias python='/usr/local/bin/python3.10' 
    alias python3='/usr/local/bin/python3.10'
  3. 保存并关闭文件,然后重新加载配置:

    source ~/.bash_profile # 或 source ~/.zshrc

    附:这里nano编辑器中:
    保存文件:按下 Ctrl + O(字母 O 代表 "Output");
    退出 nano:按下Ctrl + X

  4. 验证是否已设置成功:

    python --version

方法 2:将 Python 3.10 添加到系统路径前

/usr/local/bin 中的 Python 3.10 设置为全局优先,可以直接在路径前添加此目录。

  1. 编辑 ~/.bash_profile~/.zshrc

    nano ~/.bash_profile  # 或 nano ~/.zshrc
    
  2. 在文件顶部添加以下行:

    export PATH="/usr/local/bin:$PATH"
    
  3. 保存并关闭文件,然后重新加载配置:

    source ~/.bash_profile  # 或 source ~/.zshrc
    

这样,你应该可以在每次打开终端时默认使用 Python 3.10 版本。

(YOLOv5-6.1) C:\Users\MR>conda install python=3.12 Channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2 - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free - defaults - nvidia - pytorch Platform: win-64 Collecting package metadata (repodata.json): done Solving environment: failed LibMambaUnsatisfiableError: Encountered problems while solving: - package torchvision-0.14.1-py37_cpu requires pytorch 1.13.1, but none of the providers can be installed Could not solve for environment specs The following packages are incompatible ├─ python 3.12** is requested and can be installed; ├─ pytorch-cuda 11.6** is requested and can be installed; └─ torchvision 0.14.1 is not installable because there are no viable options ├─ torchvision 0.14.1 would require │ ├─ pytorch 1.13.1 with the potential options │ │ ├─ pytorch 1.13.1 would require │ │ │ └─ python >=3.8,<3.9.0a0 , which conflicts with any installable versions previously reported; │ │ ├─ pytorch 1.13.1 would require │ │ │ └─ python >=3.10,<3.11.0a0 , which conflicts with any installable versions previously reported; │ │ ├─ pytorch 1.13.1 would require │ │ │ └─ pytorch-mutex 1.0 cuda, which can be installed; │ │ ├─ pytorch 1.13.1 would require │ │ │ └─ python >=3.7,<3.8.0a0 , which conflicts with any installable versions previously reported; │ │ └─ pytorch 1.13.1 would require │ │ └─ python >=3.9,<3.10.0a0 , which conflicts with any installable versions previously reported; │ └─ pytorch-mutex 1.0 cpu, which conflicts with any installable versions previously reported; ├─ torchvision 0.14.1 would require │ └─ python >=3.8,<3.9.0a0 , which conflicts with any installable versions previously reported; ├─ torchvision 0.14.1 would require │ └─ python >=3.10,<3.11.0a0 , which conflicts with any installable versions previously reported; ├─ torchvision
最新发布
03-21
<think>好的,我现在需要帮用户解决Python 3.12与PyTorch 1.13.1以及torchvision 0.14.1的版本兼容问题。首先,我得确认这些版本是否官方支持。根据之前的了解,PyTorch的版本通常与特定的Python版本和CUDA版本相关联。Python 3.12是比较新的,可能官方还没有预编译的包支持。 接下来,我应该查阅PyTorch的官方文档或者可靠的来源,比如用户提供的引用[1],里面提到PyTorch、torchvision和Python版本的对应关系。根据引用[1],PyTorch 1.13.1可能只支持到Python 3.103.11,而Python 3.12可能不在支持范围内。这意味着直接使用pip安装可能会有兼容性问题。 然后,用户的需求是必须使用Python 3.12,同时安装旧版本的PyTorch和torchvision。这时候可能需要从源码编译PyTorch,但编译过程复杂且耗时,对用户来说可能不太友好。另外,是否有其他替代方案,比如使用较新的PyTorch版本,但用户可能因为项目依赖必须使用1.13.1。 另一个可能性是使用conda环境,因为conda有时能处理更多依赖问题,但同样需要确认是否有预编译的包支持Python 3.12。如果conda没有,可能还是需要源码编译。 另外,用户提到torchvision 0.14.1,这个版本通常和PyTorch 1.13.1配套,所以需要同时安装。如果PyTorch无法安装,torchvision也无法正确安装。 可能的解决方案步骤包括:1. 检查官方支持列表,确认兼容性;2. 尝试使用conda安装;3. 如果不行,考虑从源码编译;4. 使用虚拟环境隔离;5. 寻找非官方的预编译包(但有风险);6. 降级Python版本作为最后手段。 同时需要考虑用户的技术水平,如果用户不熟悉编译过程,可能需要更详细的指导,或者建议他们使用Docker镜像或其他替代方案。 最后,还要提醒用户注意依赖冲突,确保其他库与Python 3.12兼容,避免后续出现问题。</think>### 逐步解答:Python 3.12与PyTorch 1.13.1、torchvision 0.14.1的兼容安装 #### 1. **确认官方支持范围** - **PyTorch 1.13.1**官方仅支持到Python 3.10/3.11[^1],未提供Python 3.12的预编译包。 - **torchvision 0.14.1**依赖PyTorch 1.13.1,因此同样受限于Python版本。 #### 2. **尝试通过`conda`安装** ```bash conda create -n pytorch_env python=3.12 conda activate pytorch_env conda install pytorch==1.13.1 torchvision==0.14.1 -c pytorch ``` - 若`conda`未找到匹配版本,需尝试其他方法。 #### 3. **从源码编译PyTorch(复杂但兼容性高)** - 步骤: ```bash git clone --branch v1.13.1 https://github.com/pytorch/pytorch cd pytorch python setup.py install ``` - 编译需安装CUDA、C++编译器等依赖,耗时可能超过1小时。 #### 4. **使用非官方预编译包(谨慎选择)** - 搜索社区提供的Python 3.12兼容包,例如: ```bash pip install torch==1.13.1+cu117 -f https://download.pytorch.org/whl/nightly/ ``` - 注意:非官方包存在稳定性风险。 #### 5. **降级Python版本(最终备选方案)** - 若项目允许,建议使用Python 3.11: ```bash conda create -n py311 python=3.11 conda activate py311 pip install torch==1.13.1 torchvision==0.14.1 ``` #### 验证安装 ```python import torch print(torch.__version__) # 应输出1.13.1 print(torchvision.__version__) # 应输出0.14.1 ``` --- ### 相关问题 1. **如何检查PyTorch是否支持特定Python版本?** 参考[PyTorch官方版本表](https://pytorch.org/get-started/previous-versions/)[^1]。 2. **从源码编译PyTorch需要哪些依赖?** 需安装CMake、Ninja、CUDA工具包及对应版本Python开发库。 3. **使用非官方预编译包有哪些风险?** 可能包含未测试代码或安全漏洞,导致程序崩溃或数据错误。 --- : [1]pytorch,torchvision与python版本对应关系及安装命令_pytorch python版本-CSDN博客
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值