- 博客(17)
- 资源 (1)
- 收藏
- 关注
原创 epoch,batch_size,iteration,episode简介
epochone forward pass and one backward pass of all the training examples, in the neural network terminology,重点就是所有的训练数据都要跑一遍。假设有6400个样本,在训练过程中,这6400个样本都跑完了才算一个epoch。一般实验需要训练很多个epoch,取平均值作为最后的结果,在一定程度上,相当于集成,避免局部极值。batch_size中文名称是批大小,之前的6400个样本,如果送一个样本进去
          2022-04-17 17:45:56
           838
838
           1
1
        
原创 2020-12-27
深度学习,复习,模型训练与验证转 Datawhaleimport torchimport torchvisionimport torchvision.transforms as transformsimport matplotlib.pyplot as pltimport numpy as npfrom torch.autograd.variable import Variableimport torch.nn.functional as Fimport torch.optim as op
          2020-12-27 21:05:59
           187
187
           1
1
        
原创 2020-12-26
深度学习, 复习 ,图像分类 LeNet VGG ResNet转 Datawhaleimport numpy as npimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch.autograd import VariableLeNet network‘’’LeNet分为卷积层块和全连接层块两个部分。下面我们分别介绍这两个模块。卷积层块里的基本单位是卷积层后接最大池化层:卷积层用来识别图像里的
          2020-12-26 22:34:36
           268
268
        
原创 2020-12-25
深度学习,复习,图像分类介绍转 Datawhale多输入通道需要一组卷积核进行卷积操作,得到一个通道输出多输出通道需要多组卷积核进行卷积操作,得到多个通道输出网络架构LeNet分为卷积层块和全连接层块两个部分。下面我们分别介绍这两个模块。卷积层块里的基本单位是卷积层后接最大池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的最大池化层则用来降低卷积层对位置的敏感性。卷积层块由两个这样的基本单位重复堆叠构成。在卷积层块中,每个卷积层都使用5×5的窗口,并在输出上使用sigmoid激活函
          2020-12-25 22:20:43
           317
317
           1
1
        
原创 2020-12-24
深度学习,复习,PyTorch dataset转 Datawhalefrom PIL import Imageimport torchimport torchvisionfrom torch.utils.data.dataset import Datasetimport torchvision.transforms as transformsimport pandas as pdimport osfrom skimage import ioimport torchvision.data
          2020-12-24 22:14:01
           385
385
        
原创 2020-12-23
深度学习,复习 代码复现import numpy as npimport torchfrom torch.nn.modules import lossfrom torch.autograd.variable import Variableimport matplotlib.pyplot as plt# 反向传播算法'''对每一层的参数进行变化时,我们通过函数的复合可以显式的将损失函数表达为所求参数和该层的输入的复合函数,即将该层的输入视为模型的输入,将该层的输出视为模型输出,该层之后的
          2020-12-23 23:00:48
           140
140
        
原创 2020-12-22
深度学习,损失函数损失函数的本质任何一个有负对数似然组成的损失都是定义在训练集上的经验分布和定义在模型上的概率分布之间的交叉熵。例如,均方误差是经验分布和高斯模型之间的交叉熵。我们先定义预测值sample和目标值target,然后用不同的损失函数计算其损失值。import torchfrom torch.autograd import Variableimport torch.nn as nnimport torch.nn.functional as Fsample = Variable(t
          2020-12-22 21:56:43
           150
150
        
原创 2020-12-21
一.交叉熵损失1.交叉熵是一个信息论中的概念,它原来是用来估算平均编码长度的。给定两个概率分布p和q,通过q来表示p的交叉熵为在这里插入图片描述注意,交叉熵刻画的是两个概率分布之间的距离,或可以说它刻画的是通过概率分布q来表达概率分布p的困难程度,p代表正确答案,q代表的是预测值,交叉熵越小,两个概率的分布约接近那么,在神经网络中怎样把前向传播得到的结果也变成概率分布呢?Softmax回归就是一个非常有用的方法。(所以面试官会经常问你,为什么交叉熵经常要和softmax或者Sigmoid一起使用?)
          2020-12-21 23:16:03
           339
339
        
原创 2020-12-20
深度学习,损失函数一、L1范数损失 L1Loss计算 output 和 target 之差的绝对值。torch.nn.L1Loss(reduction='mean')参数:reduction - 三个值:none:不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。二、均方误差损失 MSELoss计算 output 和 target 之差的均方差。torch.nn.MSELoss(reduction='mean')参数:reduction -
          2020-12-20 22:42:12
           178
178
        
原创 2020-12-19
深度学习,回顾#我们定义好参数w如下将w定义为一个随机的正态分布W = Variable(torch.randn(1),requires_grad=True)#b定义成零矩阵:b = Variable(torch.zeros(1),requires_grad=True)#定义线性模型:def linar_model(x):return w *x +bdef get_loss(y_,y): return torch.mean((y_ - y )**2) loss.backwa
          2020-12-19 22:29:28
           159
159
           1
1
        
原创 2020-12-18
深度学习, 损失函数Matching strategy (匹配策略):不同方法 ground truth boxes 与 prior bboxes 的匹配策略大致都是类似的,但是细节会有所不同。这里我们采用SSD中的匹配策略,具体如下:第一个原则:从ground truth box出发,寻找与每一个ground truth box有最大的jaccard overlap的prior bbox,这样就能保证每一个groundtruth box一定与一个prior bbox对应起来(jaccard over
          2020-12-18 22:25:26
           286
286
           2
2
        
原创 2020-12-17
深度学习,模型结构Tiny_DetectorTiny_Detector特征提取层输出的是7x7的feature map,下面我们要在feature_map上设置对应的先验框,或者说anchor。关于先验框的概念,上节已经做了介绍,在本实验中,anchor的配置如下:将原图均匀分成7x7个cell设置3种不同的尺度:0.2, 0.4, 0.6设置3种不同的长宽比:1:1, 1:2, 2:1对于每个anchor,我们需要预测两类信息,一个是这个anchor的类别信息,一个是物体的边界框信息。在我
          2020-12-17 22:41:45
           156
156
        
原创 2020-12-16
深度学习,锚框通常,为了覆盖更多可能的情况,在图中的同一个位置,我们会设置几个不同尺度的先验框。这里所说的不同尺度,不单单指大小,还有长宽比。通过设置不同的尺度的先验框,就有更高的概率出现对于目标物体有良好匹配度的先验框(体现为高IoU)。我们就将先验框的设置位置与特征图建立一一对应的关系。而且,通过建立这种映射关系,我们可以通过特征图,直接一次性的输出所有先验框的类别信息以及坐标信息先验框类别信息的确定设置细节介绍:离散程度 fmap_dims = 7: VGG16最后的特征图尺寸为 7*7
          2020-12-16 22:19:06
           247
247
           1
1
        
原创 2020-12-15
深度学习LeNet结构#Lenet networkclass Net(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 6, 5) #in_channels, out_channels, kernel_size, stride=1 ... self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = n
          2020-12-15 22:21:19
           104
104
        
原创 2020-12-14
深度学习,图像分类入门pytorch数据集读取方法**CIFAR10数据集的定义方法如下:**`dataset_dir = '../../../dataset/'torchvision.datasets.CIFAR10(dataset_dir, train=True, transform=None, target_transform=None, download=False) `dataset_dir:存放数据集的路径。train(bool,可选)–如果为True,则构建训练集,否则构建测试
          2020-12-14 22:46:20
           355
355
           1
1
        
原创 2020-12-13
深度学习anaconda,pytorch安装使用。情况有点复杂,仅有的一点经验不足以支持我完成这项复杂的工作。在实验室的工作站上能基本使用已有的环境,但是按照教程上指示,在ubuntu上重新操作一遍属实不易,很多命令流程都不清楚,关键,之前图省事买的轻薄本没有GPU,又给本就复杂的工作增加了许多困难。忙活了一天,最后还在败在了一个源地址错误上,度娘也没能帮我解决。嗯 剩下点时候看看后面的内容,希望不要拖累后面的课程。。。。。...
          2020-12-13 22:24:35
           144
144
           1
1
        
         
      
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
 RSS订阅
RSS订阅