【IDEA】数据湖 Hudi 0.12.0 基础使用

前言

集群系统:CentOS 7.5

服务器信息:

服务器角色IP
hadoop104服务器Master192.168.0.104
hadoop105服务器Slave1192.168.0.105
hadoop106服务器Slave2192.168.0.106

使用的组件版本如下:

组件名称版本号
JDK1.8
Hadoop3.1.3
Spark3.1.1
Hive3.1.2
MySQL5.7
Hudi0.12.0

创建 Maven 项目

在 IDEA 中创建一个 Maven 项目,这里不再赘述。

项目创建完成后,将 Hadoop 的配置文件 core-site.xmlhdfs-site.xml 文件与 Spark 的日志管理文件放入到项目中的 resources 目录下。

添加依赖,可以根据我的进行修改。

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.study</groupId>
    <artifactId>Study_Hudi</artifactId>
    <version>1.0-SNAPSHOT</version>

    <repositories>
        <repository>
            <id>aliyun</id>
            <url>http://maven.aliyun.com/nexus/content/groups/public/</url>
        </repository>
    </repositories>

    <properties>
        <scala.version>2.12.10</scala.version>
        <spark.version>3.1.1</spark.version>
        <hadoop.version>3.1.3</hadoop.version>
        <hudi.version>0.12.0</hudi.version>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
    </properties>

    <dependencies>
        <!-- 依赖Scala语言 -->
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
        </dependency>
        <!-- Spark Core 依赖 -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.12</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <!-- Spark SQL 依赖 -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.12</artifactId>
            <version>${spark.version}</version>
        </dependency>

        <!-- Hadoop Client 依赖 -->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
        </dependency>

        <!-- hudi-spark3 -->
        <dependency>
            <groupId>org.apache.hudi</groupId>
            <artifactId>hudi-spark3.1-bundle_2.12</artifactId>
            <version>${hudi.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-avro_2.12</artifactId>
            <version>${spark.version}</version>
        </dependency>

        <dependency>
            <groupId>joda-time</groupId>
            <artifactId>joda-time</artifactId>
            <version>2.10</version>
        </dependency>

    </dependencies>

    <build>
        <outputDirectory>target/classes</outputDirectory>
        <testOutputDirectory>target/test-classes</testOutputDirectory>
        <resources>
            <resource>
                <directory>${project.basedir}/src/main/resources</directory>
            </resource>
        </resources>
        <!-- Maven 编译的插件 -->
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.0</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                    <encoding>UTF-8</encoding>
                </configuration>
            </plugin>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.2.0</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

</project>

插入数据

import org.apache.hudi.QuickstartUtils.{DataGenerator, convertToStringList}
import org.apache.spark.sql.{DataFrame, Dataset, SaveMode, SparkSession}

import java.util

object HudiDemo {

    def insertData(spark: SparkSession, tableName: String, tablePath: String): Unit = {
        // 导入隐式转换
        import spark.implicits._

        // 利用官方提供的模拟数据对象生成 100 条数据(JSON 格式)
        val generator = new DataGenerator()
        val list_datas: util.List[String] = convertToStringList(generator.generateInserts(100))

        // 序列化数据
        import scala.collection.JavaConverters._
        val json_datas: Dataset[String] = spark.sparkContext.parallelize(list_datas.asScala).toDS()

        // 加载数据
        val dataFrame: DataFrame = spark.read.json(json_datas)
        
        // 将数据插入数据到 Hudi 表
        import org.apache.hudi.DataSourceWriteOptions._
        import org.apache.hudi.config.HoodieWriteConfig._

        dataFrame.write
                .mode(SaveMode.Append)
                .format("hudi")
                .option("hoodie.insert.shuffle.parallelism", "2")
                .option("hoodie.upsert.shuffle.parallelism", "2")
                .option(PRECOMBINE_FIELD.key(), "ts")
                .option(RECORDKEY_FIELD.key(), "uuid")
                .option(PARTITIONPATH_FIELD.key(), "partitionpath")
                .option(TBL_NAME.key(), tableName)
                .save(tablePath)

    }

    def main(args: Array[String]): Unit = {
        // 创建 Spark 对象
        val spark: SparkSession = SparkSession.builder()
                .appName("hudi_demo")
                .master("local[*]")
                // 设置 hudi 序列化方式,固定写法
                .config("spark.serializer","org.apache.spark.serializer.KryoSerializer")
                .getOrCreate()

        // 定义表名称和 HDFS 存储路径
        val tableName = "trips"
        val tablePath = "/hudi_warehouse/demo"

        insertData(spark,tableName,tablePath)

        // 释放资源
        spark.stop()

    }

}

要点解析:

使用 DataGenerator 生成随机数据,并将数据转换为一个字符串列表,这个是官方提供的,生成的是出租车相关数据,因为 Hudi 是由 Uber(美国的打车 APP) 开发的。

将生成的数据使用 spark.sparkContext.parallelize() 方法将数据转换为一个 Spark Dataset,每个元素都是一个字符串,代表一条数据。JavaConverters 提供了将 Java List 转换为 Scala List 的方法。

在写入数据那块,使用 DataFrame 中的 write 方法将数据插入到 Hudi 表中,详细参数解释如下:

  • mode(SaveMode.Append) 表示追加模式;

  • format("hudi") 表示将数据源指定为 Hudi;

  • option() 方法用于设置 Hudi 表的属性:

    • PRECOMBINE_FIELD(预合并字段)

    • RECORDKEY_FIELD(记录键字段)

    • PARTITIONPATH_FIELD(分区路径字段)

    • TBL_NAME(指定表名称)

  • save() 方法将数据保存到 Hudi 表中。

数据表写入后,我们可以在 HDFS 中查看到:

在这里插入图片描述

查询数据

import org.apache.hudi.QuickstartUtils.{DataGenerator, convertToStringList}
import org.apache.spark.sql.{DataFrame, Dataset, SaveMode, SparkSession}

import java.util

object HudiDemo {

    def queryData(spark: SparkSession, path: String): Unit = {

        import spark.implicits._

        val dataFrame: DataFrame = spark.read.format("hudi").load(path)

        // 获取表结构
        dataFrame.printSchema()

        // 查询支付费用小于 30 的数据
        dataFrame.createOrReplaceTempView("uber")
        spark.sql(
            """
              |select
              |     driver,
              |     rider,
              |     fare,
              |     _hoodie_commit_time
              |from
              |     uber
              |where
              |     fare < 30
              |order by
              |     fare
              |limit 10
              |""".stripMargin).show(truncate = false)
    }

    def main(args: Array[String]): Unit = {
        // 创建 Spark 对象
        val spark: SparkSession = SparkSession.builder()
                .appName("hudi_demo")
                .master("local[*]")
                // 设置序列化方式
                .config("spark.serializer","org.apache.spark.serializer.KryoSerializer")
                .getOrCreate()

        // 定义表名称和 HDFS 存储路径
        val tableName = "trips"
        val tablePath = "/hudi_warehouse/demo"

        queryData(spark,tablePath)

        // 释放资源
        spark.stop()

    }

}

要点解析:

读取 Hudi 表的数据十分简单,直接指定数据存储路径,然后就可以加载为 DataFrame 格式进行操作了。

这里说一下 dataFrame.printSchema() 查询到的 Hudi 表结构:

root
 |-- _hoodie_commit_time: string (nullable = true)
 |-- _hoodie_commit_seqno: string (nullable = true)
 |-- _hoodie_record_key: string (nullable = true)
 |-- _hoodie_partition_path: string (nullable = true)
 |-- _hoodie_file_name: string (nullable = true)
 |-- begin_lat: double (nullable = true)
 |-- begin_lon: double (nullable = true)
 |-- driver: string (nullable = true)
 |-- end_lat: double (nullable = true)
 |-- end_lon: double (nullable = true)
 |-- fare: double (nullable = true)
 |-- rider: string (nullable = true)
 |-- ts: long (nullable = true)
 |-- uuid: string (nullable = true)
 |-- partitionpath: string (nullable = true)
  • _hoodie_commit_time:记录该数据被写入 Hudi 表的提交时间,Hudi 自添加字段

  • _hoodie_commit_seqno:记录该数据被写入 Hudi 表的提交序号,Hudi 自添加字段

  • _hoodie_record_key:记录该数据在 Hudi 表中的唯一标识,用于进行数据的查找和更新,Hudi 自添加字段

  • _hoodie_partition_path:记录该数据在 Hudi 表中所属的分区路径,Hudi 自添加字段

  • _hoodie_file_name:记录该数据所在的数据文件名,Hudi 自添加字段

  • begin_lat:表示起点的纬度。

  • begin_lon:表示起点的经度。

  • driver:表示司机的姓名。

  • end_lat:表示终点的纬度。

  • end_lon:表示终点的经度。

  • fare:表示该行程的费用。

  • rider:表示乘客的姓名。

  • ts:表示该行程的时间戳。

  • uuid:表示该行程的唯一标识。

  • partitionpath:表示该数据在 Hudi 表中所属的分区路径。

最终输出结果如下所示:

+----------+---------+------------------+-------------------+
|driver    |rider    |fare              |_hoodie_commit_time|
+----------+---------+------------------+-------------------+
|driver-213|rider-213|2.3197037715185997|20230420180316005  |
|driver-213|rider-213|2.3929870003208786|20230420180316005  |
|driver-213|rider-213|4.477960629065403 |20230420180316005  |
|driver-213|rider-213|4.816835556452426 |20230420180316005  |
|driver-213|rider-213|5.585015784895486 |20230420180316005  |
|driver-213|rider-213|6.105928762642976 |20230420180316005  |
|driver-213|rider-213|6.330332057511468 |20230420180316005  |
|driver-213|rider-213|8.123010514625829 |20230420180316005  |
|driver-213|rider-213|8.61052303992933  |20230420180316005  |
|driver-213|rider-213|9.40943595299718  |20230420180316005  |
+----------+---------+------------------+-------------------+

拓展:

查询 Hudi 表数据时,可以依据时间进行过滤查询,设置属性:"as.of.instant",时间的格式为:"20210728141108""2021-07-28 14: 11: 08",如下所示:

        val dataFrame: DataFrame = spark.read.format("hudi").option("as.of.instant", "20210728141108").load(path)

更新数据

import org.apache.hudi.QuickstartUtils.{DataGenerator, convertToStringList}
import org.apache.spark.sql.{DataFrame, Dataset, SaveMode, SparkSession}

import java.util

object HudiDemo {

    def insertData(spark: SparkSession, tableName: String, tablePath: String): DataGenerator = {
        // 导入隐式转换
        import spark.implicits._

        // 利用官方提供的模拟数据对象生成 100 条数据(JSON 格式)
        val generator = new DataGenerator()
        val list_datas: util.List[String] = convertToStringList(generator.generateInserts(100))

        // 序列化数据
        import scala.collection.JavaConverters._
        val json_datas: Dataset[String] = spark.sparkContext.parallelize(list_datas.asScala).toDS()

        // 加载 JSON 数据
        val dataFrame: DataFrame = spark.read.json(json_datas)

        // 将数据插入数据到 Hudi 表
        import org.apache.hudi.DataSourceWriteOptions._
        import org.apache.hudi.config.HoodieWriteConfig._

        dataFrame.write
                .mode(SaveMode.Append)
                .format("hudi")
                .option("hoodie.insert.shuffle.parallelism", "2")
                .option("hoodie.upsert.shuffle.parallelism", "2")
                .option(PRECOMBINE_FIELD.key(), "ts")
                .option(RECORDKEY_FIELD.key(), "uuid")
                .option(PARTITIONPATH_FIELD.key(), "partitionpath")
                .option(TBL_NAME.key(), tableName)
                .save(tablePath)

        return generator

    }

    def updateData(spark: SparkSession, table: String, path: String, dataGen: DataGenerator): Unit = {

        import spark.implicits._

        // 模拟产生更新数据
        import org.apache.hudi.QuickstartUtils._
        import scala.collection.JavaConverters._

        val updates: util.List[String] = convertToStringList(dataGen.generateUpdates(100))
        val updateDF: DataFrame = spark.read.json(spark.sparkContext.parallelize(updates.asScala, 2).toDS())

        // 更新数据至 Hudi 表
        import org.apache.hudi.DataSourceWriteOptions._
        import org.apache.hudi.config.HoodieWriteConfig._

        updateDF.write
                .mode(SaveMode.Append)
                .format("hudi")
                .option("hoodie.insert.shuffle.parallelism", "2")
                .option("hoodie.upsert.shuffle.parallelism", "2")
                .option(PRECOMBINE_FIELD.key(), "ts")
                .option(RECORDKEY_FIELD.key(), "uuid")
                .option(PARTITIONPATH_FIELD.key(), "partitionpath")
                .option(TBL_NAME.key(), table)
                .save(path)
    }

    def main(args: Array[String]): Unit = {
        // 创建 Spark 对象
        val spark: SparkSession = SparkSession.builder()
                .appName("hudi_demo")
                .master("local[*]")
                // 设置序列化方式
                .config("spark.serializer","org.apache.spark.serializer.KryoSerializer")
                .getOrCreate()

        // 定义表名称和 HDFS 存储路径
        val tableName = "trips"
        val tablePath = "/hudi_warehouse/demo"

        val generator: DataGenerator = insertData(spark, tableName, tablePath)
        updateData(spark,tableName,tablePath,generator)

        // 释放资源
        spark.stop()

    }

}

由于官方提供的工具类 DataGenerator 模拟生成更新 update 数据时,必须要与插入 insert 数据使用同一个 DataGenerator 对象,所以在插入数据完成后,返回 DataGenerator 对象,然后再次生成模拟数据,最后更新写入 Hudi 中。

增量查询

当 Hudi 中表的类型为:COW 时,支持两种方式查询:快照查询和增量查询,默认为快照查询。

如果是增量查询,需要指定时间戳,当 Hudi 表中数据满足:instant_time > beginTime 时,数据将会被加载读取。

此外,也可以设置某个时间范围:endTime > instant_time > begionTime,获取相应的数据。

import org.apache.hudi.QuickstartUtils.{DataGenerator, convertToStringList}
import org.apache.spark.sql.{DataFrame, Dataset, SaveMode, SparkSession}

import java.util

object HudiDemo {

    def incrementalQueryData(spark: SparkSession, path: String): Unit = {

        import spark.implicits._

        // 加载 Hudi 表数据,获取 commitTime 时间,作为增量查询时间阈值
        import org.apache.hudi.DataSourceReadOptions._
        
        spark.read
                .format("hudi")
                .load(path)
                .createOrReplaceTempView("uber")
        
        val commits: Array[String] = spark
                .sql(
                    """
                      |select
                      |  distinct(_hoodie_commit_time) as commitTime
                      |from
                      |  uber
                      |order by
                      |  commitTime desc
                      |""".stripMargin
                )
                .map(row => row.getString(0))
                .take(100)
        
        val beginTime: String = commits(commits.length - 1)
        
        println(s"beginTime = ${beginTime}")

        // 设置 Hudi 数据 CommitTime 时间阈值,进行增量查询数据
        val tripsIncrementalDF: DataFrame = spark.read
                .format("hudi")
                // 设置查询数据模式为:incremental,增量读取
                .option(QUERY_TYPE.key(), QUERY_TYPE_INCREMENTAL_OPT_VAL)
                // 设置增量读取数据时开始时间
                .option(BEGIN_INSTANTTIME.key(), beginTime)
                .load(path)

        // 将增量查询数据注册为临时视图,查询费用 fare 大于 20 的数据
        tripsIncrementalDF.createOrReplaceTempView("result")
        spark
                .sql(
                    """
                      |select
                      |  `_hoodie_commit_time`, fare, begin_lon, begin_lat, ts
                      |from
                      |  result
                      |where
                      |  fare > 20.0
                      |""".stripMargin
                )
                .show(10, truncate = false)
    }
    
    def main(args: Array[String]): Unit = {
    
        // 创建 Spark 对象
        val spark: SparkSession = SparkSession.builder()
                .appName("hudi_demo")
                .master("local[*]")
                // 设置序列化方式
                .config("spark.serializer","org.apache.spark.serializer.KryoSerializer")
                .getOrCreate()

        // 定义表名称和 HDFS 存储路径
        val tableName = "trips"
        val tablePath = "/hudi_warehouse/demo"

        incrementalQueryData(spark,tablePath)

        // 释放资源
        spark.stop()

    }

}

最终输出结果如下:

beginTime = 20230420180316005
+-------------------+------------------+-------------------+-------------------+-------------+
|_hoodie_commit_time|fare              |begin_lon          |begin_lat          |ts           |
+-------------------+------------------+-------------------+-------------------+-------------+
|20230420191528978  |38.66148557641057 |0.1688421548397122 |0.7327922821557408 |1681766807190|
|20230420191522934  |66.64889106258252 |0.09632451474505643|0.47805950282725407|1681403127621|
|20230420191528978  |68.55454228464582 |0.23574926083757652|0.9978872086544781 |1681824914068|
|20230420191528978  |63.727536726737064|0.9162255698100301 |0.13790358857355933|1681614366597|
|20230420191528978  |87.67786901640419 |0.5117763107378623 |0.5256297280989708 |1681932619296|
|20230420191522934  |52.69712318306616 |0.37272120488128546|0.3748535764638379 |1681447723048|
|20230420191528978  |95.62675391327986 |0.723282980554737  |0.5241875096707868 |1681923702941|
|20230420191528978  |87.29826695295154 |0.4020819430848185 |0.6616708725249253 |1681484734371|
|20230420191528978  |66.76801186951676 |0.17564160456980282|0.876587418131608  |1681770062715|
|20230420191528978  |39.9997692098926  |0.30356883150425995|0.08732209622598563|1681852678149|
+-------------------+------------------+-------------------+-------------------+-------------+

删除数据

使用官方的数据生成类 DataGenerator,基于已有数据构建要删除的数据,最终保存到 Hudi 表中。

import org.apache.hudi.QuickstartUtils.{DataGenerator, convertToStringList}
import org.apache.spark.sql.{DataFrame, Dataset, SaveMode, SparkSession}

import java.util

object HudiDemo {

    def deleteData(spark: SparkSession, table: String, path: String): Unit = {
        import spark.implicits._

        // 加载 Hudi 表数据,获取条目数
        val tripsDF: DataFrame = spark.read.format("hudi").load(path)
        println(s"Count = ${tripsDF.count()}")

        // 模拟要删除的数据
        val dataframe: DataFrame = tripsDF.select($"uuid", $"partitionpath").limit(2)
        import org.apache.hudi.QuickstartUtils._

        val dataGen: DataGenerator = new DataGenerator()
        val deletes: util.List[String] = dataGen.generateDeletes(dataframe.collectAsList())

        import scala.collection.JavaConverters._
        val deleteDF: DataFrame = spark.read.json(spark.sparkContext.parallelize(deletes.asScala, 2))

        // 保存数据至 Hudi 表,设置操作类型为:DELETE
        import org.apache.hudi.DataSourceWriteOptions._
        import org.apache.hudi.config.HoodieWriteConfig._

        deleteDF.write
                .mode(SaveMode.Append)
                .format("hudi")
                .option("hoodie.insert.shuffle.parallelism", "2")
                .option("hoodie.upsert.shuffle.parallelism", "2")
                // 设置数据操作类型为delete,默认值为upsert
                .option(OPERATION.key(), "delete")
                .option(PRECOMBINE_FIELD.key(), "ts")
                .option(RECORDKEY_FIELD.key(), "uuid")
                .option(PARTITIONPATH_FIELD.key(), "partitionpath")
                .option(TBL_NAME.key(), table)
                .save(path)

        // 再次加载 Hudi 表数据,统计条目数,查看是否减少 2 条
        val hudiDF: DataFrame = spark.read.format("hudi").load(path)
        println(s"Delete After Count = ${hudiDF.count()}")
    }

    def main(args: Array[String]): Unit = {
    
        // 创建 Spark 对象
        val spark: SparkSession = SparkSession.builder()
                .appName("hudi_demo")
                .master("local[*]")
                // 设置序列化方式
                .config("spark.serializer","org.apache.spark.serializer.KryoSerializer")
                .getOrCreate()

        // 定义表名称和 HDFS 存储路径
        val tableName = "trips"
        val tablePath = "/hudi_warehouse/demo"

        deleteData(spark,tableName,tablePath)

        // 释放资源
        spark.stop()

    }

}

最终输出结果如下:

Count = 200
Delete After Count = 198
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

月亮给我抄代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值