07-13 pandas -增删改查 +dataframe创建练习

本文介绍了如何使用Pandas库进行数据操作,包括增加列(通过列名乘积创建新列)、删除列(使用drop和del函数)、修改数据(移动列、更改列名和行索引)、查看数据统计信息(使用describe()函数)以及DataFrame的创建实践。
摘要由CSDN通过智能技术生成

一、 增加列

1、 data[‘payment’] = data[‘amounts’]*data[‘counts’]
新的一列等于 原两列之积

2、data[‘payway’]= [‘现金支付’]

然后查看 data.columns --返回所有列名

import pandas as pd
import numpy as np
list1=[['李杰',19,2,5000],['黑白',23,3,6788],['红帽',34,9,9000]]

df6=pd.DataFrame(list1,columns=['姓名','年龄','工作年限','月薪'])

df6=
姓名	年龄	工作年限	月薪
0	李杰	19	2	5000
1	黑白	23	3	6788
2	红帽	34	9	9000

#增

df6['所有工资']=df6['月薪']*df6['工作年限']
df6
df6
姓名	年龄	工作年限	月薪	所有工资
0	李杰	19	2	5000	10000
1	黑白	23	3	6788	20364
2	红帽	34	9	9000	81000
*12
df6['年薪']=df6['月薪']*12
df6
姓名	年龄	工作年限	月薪	所有工资	年薪
0	李杰	19	2	5000	10000	60000
1	黑白	23	3	6788	20364	81456
2	红帽	34	9	9000	81000	108000

二、 删

删 drop —一次可以删除多列 del—一次只能删除一列

df6.drop(['月薪','年龄'],axis=1,inplace=True) 

工作年限	所有工资	年薪
0	2	10000	60000
1	3	20364	81456
2	9	81000	108000
'''
axis=1 表示横轴,即删除作用到每一行上,即删除列, inplace表示 删除作用于元数据上,#如无inplace只将产出效果返回于视图上边
df6
年龄	工作年限	月薪	所有工资	年薪
0	19	2	5000	10000	60000
1	23	3	6788	20364	81456
2	34	9	9000	81000	108000

#注意删除函数 del 在前,与数据框名称无 . 连接

del df6[
人工智能时代,编程已成为一项基本技能。Python,人工智能时代最佳的编程入门语言。本系列课程分为三部分:手把手教你学Python(基础篇)、手把手教你学Python(进阶篇)、手把手教你学Python(实战篇)。面向零基础用户,从无到有,从易到难,层层递进,带你遨游Python世界;采用案例驱动,即学即练即用,将学习落到实处。人工智能时代,编程已成为一项基本技能。国内一些发达省市,已将编程纳入小学教材;编程门槛大幅降低,已不再是计算机行业的专利;学编程训练思维,受益终生;掌握编程可有效,提升工作效率。Python,人工智能时代最佳的编程入门语言。设计人性化,语法简单,容易掌握,近年来热度不断攀升;丰富的内置标准库,强大的第三方库,大大缩减编程工作量;网络爬虫、数据处理、科学计算方面的优势,适用于各行各业;强大的技术体系,能够胜任Web开发、系统运维、人工智能等主流领域本系列课程的主要内容安排。   基础篇:语法基础程序结构基本数据结构函数与异常处理常见库操作文件操作 …………   进阶篇:面向对象思想数据库操作Numpy库介绍Pandas库介绍数据可视化机器学习算法…………   实战篇:网络爬虫原理Requests库学习电影网站信息抓取Scrapy爬虫框架研招网数据抓取学位论文数据抓取…………课程教学特点:零基础,从无到有,从易到难,层层递进,带你遨游Python的世界;理论联系实践,案例驱动,即学即练即用,将学习落到实处;提供学习交流平台,在线答疑,自学途不迷茫;本课程适用人群:计算机相关专业的新生准备转型从事数据处理的职场人员各行各业在职数据处理人员希望从事科学研究的人员程序设计爱好者课程目录安排如下: 第9章 Python面向对象9_1_类和对象9_2_实例变量9_3_类变量9_4_类的方法9_5_类的继承9_6_对象的拷贝9_7_本章小结9_8_练习讲解19_9_练习讲解2第10章 Python操作数据库10_1_数据库基础10_2_结构化查询语句SQL10_3_Python操作数据库核心API10_4_Python操作数据库案例10_5_本章小结10_6_练习讲解第11章 Numpy入门与实践11_1_数组对象-ndarray11_2_索引和切片(上)11_3_索引和切片(下)11_4_Numpy的通用函数11_5_数组运算11_6_本章小结11_7_练习讲解第12章 Pandas入门与实践12_1_Series和Index介绍12_2_Series数据访问和常用方法12_3_DataFrame创建与数据访问12_4_DataFrame的属性和方法12_5_DataFrame的合并12_6_Pandas加载数据和缺失值处理12_7_Pandas分组操作12_8_Pandas数据合并操作12_9_Pandas综合案例12_10_本章小结12_11_练习讲解第13章 数据可视化-matplotlib13_1_pyplot绘图基础13_2_绘制线形图13_3_绘制直方图13_4_绘制条形图13_5_绘制饼状图13_6_绘制散点图13_7_生成词云图13_8_本章小结13_9_练习讲解第14章 机器学习库 Scikit-learn14_1_机器学习基础14_2_鸢尾花数据读取和可视化14_3_自己写KNN算法实现14_4_调用sklearn的KNN算法14_5_波士顿房价预测问题14_6_手写数字识别14_7_本章小结 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值