时间分析的基本概念- 与时间相关的稳定关系
1.1 时间序列的基本定义
指随着时间,按照一定规律波动的数列。一个具有分析价值的时间序列往往可以分解
成一下趋势:
趋势:趋势是时间序列在某一方向上的持续运动的上升,下降趋势;
季节变换:往往指在一年中与季节/月份强相关的周期性波动;
周期变化:一般指跨越多年的周期性变化,较常见的经济周期,冰川期;
不规则变化:即常见的随机扰动;
时间序列分解的成功与否,取决于两个因素:
1:数据序列本身是隐藏着规律的,不可预测的部分只是其中的一小部分;
2:分解的方法要合适,尤其是周期的判断要准确。
注:预测技术不是万能的,其最大价值不是预测未来,而是辅助我们监控我们做
的每一步是否正确。
1.2 时间序列的相关公式—我相关我自己
时间序列可记为:{Yi:t=0,1,2,3………};
协方差:Cov(Yt,Ys)=E[(Yt-μt)(Ys-μs)]=E(YtYs)-μtμs,t,s=0,1,2,….
自相关系数:Corr(Yt,Ys)= Cov(Yt,Ys)/(二者标准差之积)
如:Yt 表示5月份的数据,Ys表示6月份的数据;
自相关系数目的地即是为了检验时间序列的稳定;
1.3 平稳时间序列