Pytorch系列文章目录
第一章 pytorch的基本介绍
第二章 pytorch的基本操作
文章目录
前言
本文主要介绍笔者多年使用pytorch的心得,指导新人跨越入门障碍。新人入门很容易迷失方向,兜兜转转中失去兴趣,进而放弃。笔者希望能通过自己一路来的心得体会,给众多新人启迪未来,坚持学习,早日进入人工智能的大门。
一、pytorch是什么?
pytorch是一个深度学习框架,由Facebook团队主导,目前已是学术界和工业界优先考虑的人工智能框架,根本上说,是他将Python语言的便捷和人工智能开发套件、工具、打磨为一体,极大的方便从业者将想法转变为生产力的集成环境。
二、使用步骤
1.搭建虚拟环境
不论是自身学习还是生产环境,虚拟环境的使用,能极大的方便开发人员在多个工具版本中做匹配切换,尤其是新人入门的一大拦路虎就是,环境报错,我们从基本工具开始简略说明开发环境的搭建。
系统、管理,IDE、框架 分别是 ubuntu、anaconda、pycharm、pytorch
2.基本教学
主要从以下几个方面来阐述:
1、Pytorch基础
Tensor
Autograd
torch.nn
2、神经网络
数据处理
网络结构
损失讲解
3、训练与评估
优化策略
基本训练
模型评估
3.高级教学
1、经典模型亮点介绍
迁移学习
Alexnet:从我开始
vggnet:深,但不能太深
inception:分分合合
resnet:我换个思路
DenseNet:我比你还恶心
FPN:新老融合
2、经典模型实用介绍
FasterRCNN系列
SSD系列
YOLO系列
Transformer系列
3、其它高级功能
多GPU训练
数据并行
总结
本文简单介绍了pytorch的学习顺序,接下来我会一直更新Pytorch系列内容。跟我一起看看人工智能的内部吧。