千帆大模型提示词调优实践

原始提示词

以下是减重训练计划的提示词

# 能力与角色:
作为一名经验丰富的注册营养师和运动健身教练,我将根据您的具体情况,为您制定一个为期{duration}周的安全有效的个性化减重计划,并帮助您养成健康的生活方式。

# 背景:
 * 性别: {gender} (例如:女)
 * 年龄: {age}岁 (例如:25岁)
 * 体重: {weight}kg (例如:65kg)
 * 身高: {height}cm (例如:160cm)

# 指令:
1. 制定一个为期{duration}周的个性化减重计划,包含每周的详细安排,并充分考虑减重者的个体信息,避免千篇一律的方案。
2. 计划需结合运动科学的原理和营养学知识,详细说明训练强度、运动类型、运动时间、心率区间等运动参数。饮食计划需包含每日三餐及零食的具体食谱建议,并控制每日的卡路里摄入。
3. 计划必须考虑安全性,避免过度运动或节食,并提供相关的风险提示及应对措施。
此处省略......

# 输出示例:
严格按照以下示例的相同风格输出内容:
减重训练计划
第1周
* 训练目标: 建立基础运动习惯,适应低强度训练。
* 总运动时间: 150分钟
* 训练课程:
  * 有氧运动(快走/慢跑):60分钟
  * 力量训练(全身):30分钟 (例如:深蹲、俯卧撑、平板支撑等,根据自身情况选择重量和组数)
  * 瑜伽/拉伸:60分钟 (放松肌肉,提高柔韧性)
* 日常饮食: 每日摄入热量减少500卡路里,控制精制糖、油脂摄入。 多食用蔬菜水果,保证蛋白质摄入。 参考食谱:
  * 早餐:燕麦粥+水果
  * 午餐:鸡胸肉沙拉+蔬菜
  * 晚餐:清蒸鱼+西兰花
  * 零食:水果、坚果 (少量)
* 作息: 每日保证7-8小时睡眠。 规律作息,避免熬夜。

当前问题

  1. 提示词要求输出每周的计划,但实际输出时会存在不稳定的问题,比如会省略部分周,或者合并周期。
  • 省略部分周。

省略场景一: 第13,14,15周直接输出同第12周。

第13周
·同第12周
第14周
·同第12周
第15周
·无具体训练计划,充分休息。

省略场景二:省略数周,如下:“…(中间周数省略,按照递增原则逐渐增加训练时间和强度)”。

* 训练目标: 提升运动强度和耐力,增加肌肉量。
* 总运动时间: 每周200分钟。
* 训练课程:
  * 有氧运动: 每周3次,每次60分钟,增加运动强度或时间,例如快跑、游泳、骑自行车等。 心率保持在最大心率的70-80%。
  * 力量训练: 每周2次,每次45分钟,增加训练重量或组数,选择更多复合动作。 例如:深蹲、硬拉、卧推、引体向上等。
  * 瑜伽/HIIT: 每周1次瑜伽,1次HIIT (高强度间歇训练),
### 如何通过提示词提高大模型的回答准确率 为了使大模型更好地理解任务需求并提供高质量响应,可以通过设计和提示词来显著提升其回答的准确性。以下是几个关键策略: #### 明确目标 清晰的目标设定有助于引导大语言模型专注于特定任务[^4]。如果提示词模糊不清,则可能导致模型生成无关或偏离主题的内容。因此,在构建提示词时应尽可能精确描述所需完成的任务。 #### 基于强化学习调整提示词 可以采用强化学习技术来进行自动化的提示词过程。这种方法利用奖励信号指导算法探索不同的表达方式直到找到最能促进预期输出的形式为止[^1]。这种方式不仅提高了效率还可能发现人类难以想到的最佳配置方案。 #### 平衡计算资源与性能表现 需要注意的是,虽然复杂的指令可能会带来更好的结果但同时也增加了运算成本。所以在实际操作过程中要权衡好两者之间的关系以确保整个系统的可行性[^2]。 #### 定制化目标函数 针对不同应用场景下的特殊要求制定相应的评估标准非常重要。这涉及到如何衡量成功与否以及哪些因素应该被先考虑等问题 。例如对于某些实时交互型服务来说速度可能是首要考量点;而对于另一些注重内容质量的应用场合而言则需更加重视语义理解和逻辑连贯性等方面的表现[^3]。 ```python def optimize_prompt(prompt_text): # Example function to demonstrate prompt optimization logic. optimized = refine_goal_definition(prompt_text) # Refines the objective part of the prompt based on . rl_adjusted = apply_reinforcement_learning(optimized) # Applies RL techniques as per . resource_balanced = adjust_for_computation_cost(rl_adjusted) # Balances cost according to insights from . final_version = customize_objective_function(resource_balanced) # Customizes using principles outlined in . return final_version ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值