R代码:采用 Weibull 分布法估计一只股票180天周期95%置信水平的VaR

文章通过R语言加载多个库,包括MASS、survival等,对数据进行处理,计算股票收益,转换日期格式,并绘制价格和收益的时间序列图。接着,利用Weibull分布估计股票在180天周期内的95%置信水平ValueatRisk(VaR)并绘制其时序图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

library(MASS)
library(survival)
library(fitdistrplus)
library(openxlsx)
library(zoo)
library(xts)
library(TTR)
library(quantmod)
data <- read.xlsx("C:/pc/Desktop/weibull/data.xlsx")
n <- length(data$Date)  
# 计算returns
data$returns[2:n] <- diff(log(data$Close))
# 转换日期格式
data$Date <- as.Date(data$Date)  
# Price的时序图
plot(data$Date, data$Close, type = "l", xlab = "Date", ylab = "Price") 
# returns的时序图
plot(data$Date, data$returns, type = "l", xlab = "Date", ylab = "returns") 
# 使用Weibull分布法估计股票180天周期95%置信水平的VaR
periods <- 180
confidence <- 0.95
n <- length(data$returns)
var_seq <- rep(NA, n - periods)
for (i in (periods + 1):n) {
    var_seq[i - periods] <- -qweibull(0.95, shape = 1, scale = sd(data$returns[(i-180):(i-1)]))
}
# 画出VaR时序图
plot(var_seq, type = "l", xlab = "Date", ylab = "VaR")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值