要求
给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
思路
方法:动态规划
- 首先初始化长度为 n+1 的数组 dp,每个位置都为 0
- 如果 n 为 0,则结果为 0
- 对数组进行遍历,下标为 i,每次都将当前数字先更新为最大的结果,即 dp[i]=i,比如 i=4,最坏结果为 4=1+1+1+1 即为 4 个数字
- 动态转移方程为:dp[i] = Math.min(dp[i], dp[i - j * j] + 1),i 表示当前数字,j*j 表示平方数个数;其实是dp = Math.min(dp[i], dp[i - j * j] + dp[j * j]), 因为j * j肯定是一个完全平方数, 即dp[j * j]等于1, 总结简化后得到dp = Math.min(dp[i], dp[i - j * j] + 1)
public class LeetCode279 {
public int numSquares(int n) {
// 默认初始化值都为0
int[] dp = new int[n + 1];
for (int i = 1; i <= n; i++) {
//最坏的情况每次加1,每次都将当前数字先更新为最大的结果
dp[i] = i;
//1、2、3、4 ---> 1、4、9、16
for (int j = 1; j*j <= i; j++) {
//dp[i - j*j] + 1为了兜底,最少也有一个完全平方数
dp[i] = Math.min(dp[i],dp[i - j*j] + 1);
}
}
return dp[n];
}
}