LeetCode279:完全平方数

要求

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。

思路

方法:动态规划

  • 首先初始化长度为 n+1 的数组 dp,每个位置都为 0
  • 如果 n 为 0,则结果为 0
  • 对数组进行遍历,下标为 i,每次都将当前数字先更新为最大的结果,即 dp[i]=i,比如 i=4,最坏结果为 4=1+1+1+1 即为 4 个数字
  • 动态转移方程为:dp[i] = Math.min(dp[i], dp[i - j * j] + 1),i 表示当前数字,j*j 表示平方数个数;其实是dp = Math.min(dp[i], dp[i - j * j] + dp[j * j]), 因为j * j肯定是一个完全平方数, 即dp[j * j]等于1, 总结简化后得到dp = Math.min(dp[i], dp[i - j * j] + 1)
public class LeetCode279 {
    public int numSquares(int n) {
        // 默认初始化值都为0
        int[] dp = new int[n + 1];
        for (int i = 1; i <= n; i++) {
            //最坏的情况每次加1,每次都将当前数字先更新为最大的结果
            dp[i] = i;
            //1、2、3、4 ---> 1、4、9、16
            for (int j = 1; j*j <= i; j++) {
                //dp[i - j*j] + 1为了兜底,最少也有一个完全平方数
                dp[i] = Math.min(dp[i],dp[i - j*j] + 1);
            }
        }
        return dp[n];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值