给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1]
输出:1
示例 3:
输入:nums = [0]
输出:0
示例 4:
输入:nums = [-1]
输出:-1
示例 5:
输入:nums = [-100000]
输出:-100000
提示:
1 <= nums.length <= 3 * 104
-105 <= nums[i] <= 105
这题我的思路是用贪心算法来做的,思路就是如果加上数组现在遍历的位置的数字之后会出现负数,那么就说明这一小段的遍历已经结束了,此外有一个存放答案的int,每当出现更大的cou的时候就会让答案变成cou的数字。
class Solution {
public int maxSubArray(int[] nums) {
int ans = nums[0];
int cou = 0;
int n = nums.length;
for(int i = 0;i < n;i++){
cou = cou + nums[i];
ans = (ans > cou)?ans:cou;
if(cou < 0)cou = 0;
}
return ans;
}
}
描述的有点抽象,看了下有个题解的思路就是这样的,这里搬运过来
题解
贪心贪的是哪里呢?
如果 -2 1 在一起,计算起点的时候,一定是从1开始计算,因为负数只会拉低总和,这就是贪心贪的地方!
局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。
全局最优:选取最大“连续和”
局部最优的情况下,并记录最大的“连续和”,可以推出全局最优。
从代码角度上来讲:遍历nums,从头开始用count累积,如果count一旦加上nums[i]变为负数,那么就应该从nums[i+1]开始从0累积count了,因为已经变为负数的count,只会拖累总和。
这相当于是暴力解法中的不断调整最大子序和区间的起始位置。
那有同学问了,区间终止位置不用调整么? 如何才能得到最大“连续和”呢?
区间的终止位置,其实就是如果count取到最大值了,及时记录下来了。例如如下代码:
if (count > result) result = count;
这样相当于是用result记录最大子序和区间和(变相的算是调整了终止位置)。
动态规划
这题还有动态规划的做法,这里搬运一下
class Solution {
public int maxSubArray(int[] nums) {
int pre = 0, maxAns = nums[0];
for (int x : nums) {
pre = Math.max(pre + x, x);
maxAns = Math.max(maxAns, pre);
}
return maxAns;
}
}
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/maximum-subarray/solution/zui-da-zi-xu-he-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
作者:carlsun-2
链接:https://leetcode-cn.com/problems/maximum-subarray/solution/53-zui-da-zi-xu-he-bao-li-tan-xin-dong-t-oidt/
来源:力扣(LeetCode) 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/maximum-subarray
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。