np.logical_and(box_w>1, box_h>1)作为目标检测无效数据过滤作用

假设有两组numpy数据:aa, bb

aa = np.array([0.3, 1.8, 4.9, 3, 7, 0.6, 0.98])
bb = np.array([3, 0.8, 2.9, 3, 7, 1.6, 1.98])

cc为如下运算结果

cc = np.logical_and(aa>1, bb>1)

得到的结果为:

cc = [False False True True True False False]

将cc得到的结果作为过滤器

aa_cc = aa[cc]
bb_cc = bb[cc]

得到的结果为(将True对应的值筛选出来):

aa_cc =  [4.9 3.  7. ]
bb_cc =  [2.9 3.  7. ]

相关程序如下:


import numpy as np
aa = np.array([0.3, 1.8, 4.9, 3, 7, 0.6, 0.98])
bb = np.array([3, 0.8, 2.9, 3, 7, 1.6, 1.98])
cc = np.logical_and(aa>1, bb>1)
print("cc = ", cc)

aa_cc = aa[cc]
bb_cc = bb[cc]
print("aa_cc = ", aa_cc)
print("bb_cc = ", bb_cc)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值