MATLAB矩阵运算函数

MATLAB 专栏收录该内容
2 篇文章 0 订阅

一.对角阵

1.提取矩阵的主对角线上的元素,形成一个列向量:diag(A)

2.提取矩阵第k条对角线的元素,产生一个列向量:diag(A,K)

3.以向量V为对主对角线元素,产生对角矩阵:diag(V)

4.以向量V为第k条对角线元素,产生对角矩阵:diag(V,K)

(对角线以上为正,对角线为0,对角线一下为负)

二.三角阵

1.上三角:

triu(A):提取主对角线以上的元素

trui(A,K):提取第k对角线以上的元素

2.下三角:

tril(A):原理同上,提取后剩余的部分用0填充,组成和原来一样规模的矩阵。

三.矩阵的转置

1.

四.矩阵的旋转

rot90(A,K)将矩阵A逆时针旋转90度的k倍。

五.矩阵的翻转

1.左右翻转:fliplr(A)

第一列与最后一列对换,其他的依次类推。

2.上下翻转:flipud(A)

上下交换。

六.矩阵求逆

使得矩阵A,B;AB=BA=I

Inv(A)求方阵的逆矩阵;

七.矩阵的行列式

|A|:det(A):det(A负一次方)=1/det(A)

八.矩阵的迹

trace(A)

九.矩阵的秩

rank(A)

十.向量和矩阵的范数

向量1--范数:向量元素的绝对值

\left \| V \right \|_{1}=\sum_{i=1}^{n}\left | v_{i} \right |

norm[V,1];

向量2--范数:向量元素的平方和的平方根

\left \| V \right \|_{2}=\sqrt{\sum_{i=1}^{n}}v_{i}^{2}

norm[V]或norm[V,2];

向量无穷--范数:所有向量元素绝对值中的最大值

\left \| V \right \|_{\infty }=\max_{1\leqslant i\leqslant n}\left \{ \left | v_{i} \right | \right \}

norm[V,inf];

十一.矩阵的条件数

矩阵的条件数等于A的范数与A的逆矩阵的范数的乘积;

条件数越接近于1,矩阵的性能越好,反之,矩阵的性能越差。

cond[A,1];

cond[A]或cond[A,2];

cond[A,inf];

十二.矩阵的特征向量值和特征向量

E=eig(A);求矩阵A的全部特征值,构成向量E,

[X,D]=eig(A):求矩阵A的全部特征值,构成对角阵D’,并产生矩阵X,X各列是相应的特征向量。

十三.稀疏矩阵

A=sparse(S):将矩阵S转化为稀疏存储方式的矩阵A。

S=full(A):将矩阵A转化为完全存储方式的矩阵S。

[B,d]=spdiags(A):从带状稀疏矩阵A中提取全部非0对角线元素赋给矩阵B及其这些非0对角线的位置向量d/

A=spdiags[B,d,m,n]:产生带状稀疏矩阵的稀疏存储矩阵A,其中m,n为原带状稀疏矩阵的行数于列数,矩阵B的第i列即为原带状稀疏矩阵的第i条非0对角线,向量d为原带状稀疏矩阵所有非0对角线位置。

  • 3
    点赞
  • 0
    评论
  • 29
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

©️2022 CSDN 皮肤主题:数字20 设计师:CSDN官方博客 返回首页

打赏作者

weixin_46438810

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值