解题思路:
查看一组方程式里面逻辑是否相通,利用合并集可以很直观的解决这个问题。
合并集:简单理解为表示两个节点直接是否连通。
class Solution {
//动态连通性其实就是一种等价关系,具有「自反性」「传递性」和「对称性」,其实 == 关系也是一种等价关系,具有这些性质。所以这个问题用 Union-Find 算法就很自然
public boolean equationsPossible(String[] equations) {
UF uf = new UF(26);
//先查看相等的情况等下,将相等的字符设置为连通
for(String i : equations){
if(i.charAt(1) == '='){
char x = i.charAt(0);
char y = i.charAt(3);
uf.union(x - 'a', y - 'a'); //保持数值在26以内
}
}
//再检查不相等的情况,此时如果是连通状态,那肯定是不合理的
for (String i : equations){
if (i.charAt(1) == '!'){
char x = i.charAt(0);
char y = i.charAt(3);
if(uf.connected(x - 'a', y - 'a'))
return false;
}
}
return true;
}
}
合并集 class:
方法 | 描述 |
---|---|
union(p, q) | 连通两个节点 |
find( p ) | 找到当前节点 |
connected(p, q) | 判断是否连通 |
count | 返回连通个数 |
class UF{
//记录连通个数
private int count;
//节点 x 的节点是 parent[x]
private int[] parent;
private int[] size; // 记录树的值,来体现节点值的大小,帮助后续平衡连接节点
public UF(int n ){
//一开始互不连通
this.count = n;
//父节点指针初始指向自己
parent = new int[n];
size = new int[n];
for(int i = 0; i < n; i++){
parent[i] = i;
size[i] = 1; //初始化都应该为一
}
}
public void union(int p, int q){
int rootP = find(p);
int rootQ = find(q);
if(rootP == rootQ) return;
//让树保持平衡,小数接在大树下面
if(size[rootP] > size[rootQ]){
parent[rootQ] = rootP; //谁大谁当根节点
size[rootP] += size[rootQ];
}else{
parent[rootP] = rootQ;
size[rootQ] += size[rootP];
}
count--;
}
public int find(int x){
while(parent[x] != x){
parent[x] = parent[parent[x]];
x = parent[x]; //复杂度为1
}
return x;
}
// 判断节点 p 和节点 q 是否连通
public boolean connected(int p, int q) {
int rootP = find(p);
int rootQ = find(q);
return rootP == rootQ;
}
public int count(){
return count;
}
}