【办公软件-Excel】 Excel 中自动增加序号

一、三种方法

要在 Excel 中自动增加序号,您可以使用以下方法:

方法一:使用公式

  1. 在第一行(例如 A2 单元格)输入初始序号,例如 1
  2. 在下一行(A3 单元格)输入公式:=A2+1
  3. 选中 A3 单元格,向下拖动填充柄(单元格右下角的小方块)到您需要的位置,Excel 会自动计算并填充后续序号。

方法二:使用自动填充

  1. 在起始单元格(例如 A2)输入数字 1
  2. 选中 A2 单元格,鼠标移动到单元格右下角,当光标变成黑色十字形时,按住鼠标左键向下拖动到所需的行数。
  3. 拖动后松开鼠标,Excel 会自动填充序号。

方法三:使用序列填充

  1. 在起始单元格(例如 A2)输入数字 1
  2. 在下一单元格(A3)输入数字 2
  3. 选中这两个单元格(A2 和 A3),鼠标移动到选中区域的右下角,出现黑色十字形时,按住鼠标左键向下拖动。
  4. Excel 会根据前两个数的规律,继续填充后续序号。

二、删除或插入行后,序号自动更新

如果您在删除行后希望序号自动更新,之前的方法可能无法满足需求。为了解决这个问题,您可以使用 Excel 的函数来自动生成序号,使其在插入或删除行时自动更新。

方法:使用 SUBTOTALROW 函数自动编号

  1. 使用 ROW 函数

    • 在起始单元格(例如 A2)中输入公式:=ROW()-1
      • 这里的 -1 是为了使序号从 1 开始。如果您的数据从第 2 行开始,减去 1;如果从其他行开始,调整减去的数字。
    • 向下填充公式到需要的位置。
    • 这样,当您插入或删除行时,序号会自动更新。
  2. 使用 SUBTOTAL 函数(适用于过滤后的数据)

    • 在起始单元格(A2)中输入公式:=SUBTOTAL(3,$B$2:B2)
      • 这里的 $B$2:B2 是指根据某一列(例如 B 列)的数据进行计数,您可以根据实际情况调整列。
      • 3 是计数函数代码,用于统计非空的单元格数量。
    • 向下填充公式到需要的位置。
    • 这个方法在您对数据进行筛选时,序号也会按照筛选结果自动更新。

示例

  • 如果您的数据从第 5 行开始,公式应调整为 =ROW()-4
  • 如果想要忽略隐藏的行,可以使用 =SUBTOTAL(103,$B$2:B2),其中 103 用于计数可见的非空单元格。

注意事项

  • 确保公式中的引用范围正确,避免序号计算错误。
  • 使用 ROW 函数时,序号会根据行号自动更新,非常适合简单的序号生成。
  • 使用 SUBTOTAL 函数时,可以在数据筛选或隐藏行时,保持序号的连续性。

通过以上方法,您在删除或插入行后,序号都会自动更新,保持数据的准确性。

服务端部署与启动 现在可以安装服务端了,使用的是 bert-base, 来自于项目BERT-BiLSTM-CRF-NER, 服务端只是该项目中的一个部分。 项目地址:https://github.com/macanv/BERT-BiLSTM-CRF-NER ,感谢Macanv同学提供这么好的项目。 这里要说明一下,我们经常会看到bert-as-service 这个项目的介绍,它只能加载BERT的预训练模型,输出文本向量化的结果。 而如果要加载fine-turing后的模型,就要用到 bert-base 了,详请请见: 基于BERT预训练的中文命名实体识别TensorFlow实现 下载代码并安装 : pip install bert-base==0.0.7 -i https://pypi.python.org/simple 1 或者 git clone https://github.com/macanv/BERT-BiLSTM-CRF-NER cd BERT-BiLSTM-CRF-NER/ python3 setup.py install 1 2 3 使用 bert-base 有三种运行模式,分别支持三种模型,使用参数-mode 来指定: NER 序列标注类型,比如命名实体识别; CLASS 分类模型,就是本文中使用的模型 BERT 这个就是跟bert-as-service 一样的模式了 之所以要分成不同的运行模式,是因为不同模型对输入内容的预处理是不同的,命名实体识别NER是要进行序列标注; 而分类模型只要返回label就可以了。 安装完后运行服务,同时指定监听 HTTP 8091端口,并使用GPU 1来跑; cd /mnt/sda1/transdat/bert-demo/bert/bert_svr export BERT_BASE_DIR=/mnt/sda1/transdat/bert-demo/bert/chinese_L-12_H-768_A-12 export TRAINED_CLASSIFIER=/mnt/sda1/transdat/bert-demo/bert/output export EXP_NAME=mobile_0 bert-base-serving-start \ -model_dir $TRAINED_CLASSIFIER/$EXP_NAME \ -bert_model_dir $BERT_BASE_DIR \ -model_pb_dir $TRAINED_CLASSIFIER/$EXP_NAME \ -mode CLASS \ -max_seq_len 128 \ -http_port 8091 \ -port 5575 \ -port_out 5576 \ -device_map 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 注意:port 和 port_out 这两个参数是API调用的端口号, 默认是5555和5556,如果你准备部署多个模型服务实例,那一定要指定自己的端口号,避免冲突。 我这里是改为: 5575 和 5576 如果报错没运行起来,可能是有些模块没装上,都是 bert_base/server/http.py里引用的,装上就好了: sudo pip install flask sudo pip install flask_compress sudo pip install flask_cors sudo pip install flask_json 1 2 3 4 我这里的配置是2个GTX 1080 Ti,这个时候双卡的优势终于发挥出来了,GPU 1用于预测,GPU 0还可以继续训练模型。 运行服务后会自动生成很多临时的目录和文件,为了方便管理与启动,可建立一个工作目录,并把启动命令写成一个shell脚本。 这里创建的是mobile_svr\bertsvr.sh ,这样可以比较方便地设置服务器启动时自动启动服务,另外增加了每次启动时自动清除临时文件 代码如下: #!/bin/bash #chkconfig: 2345 80 90 #description: 启动BERT分类模型 echo '正在启动 BERT mobile svr...' cd /mnt/sda1/transdat/bert-demo/bert/mobile_svr sudo rm -rf tmp* export BERT_BASE_DIR=/mnt/sda1/transdat/bert-demo/bert/chinese_L-12_H-768_A-12 export TR
最新发布
04-03
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿寻寻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值