机器学习(Machine Learning, ML)与人工智能(Artificial Intelligence, AI)之间的关系,常用一句话概括就是:
AI 是目标,ML 是主要手段之一。
以下从定义、层级关系、方法和应用等角度总结两者的相同点与区别。
相同点
- 目标一致:都致力于让计算机系统在某种意义上“更聪明”,能解决传统编程难以处理的复杂问题。
- 数据驱动:现代 AI 绝大多数成果都依赖大量数据与统计方法;机器学习更是以数据为中心。
- 数学基础相通:概率论、统计学、线性代数、优化等数学工具在两者中同样重要。
- 应用领域重叠:计算机视觉、自然语言处理、语音识别、推荐系统等场景中,AI 系统通常由 ML 算法实现核心功能。
区别
-
范围层级
• AI(大集合):任何让机器表现出智能行为的技术和系统——可包含符号推理、专家系统、搜索算法、规划、博弈、机器学习、机器人学等。
• ML(子集):通过从数据中自动学习规律以改进任务表现的算法与方法,属于实现 AI 的一条主流路线。 -
方法论
• AI 包括基于规则的符号主义方法(例如一系列推理规则、知识图谱推理)以及基于经验的连接主义方法(即各种 ML 算法)。
• ML 专注于统计学习:监督学习、无监督学习、强化学习、深度学习等。 -
依赖资源
• 传统符号 AI 更依赖人工构建的知识与规则;
• ML 更依赖数据、算力和模型参数。 -
结果解释性
• 符号 AI 规则透明,可解释性强;
• 多数 ML 尤其深度学习模型在可解释性上更弱,需要额外技术(SHAP、LIME 等)辅助理解。 -
应用角色
• 在一个完整的 AI 系统中,ML 模型常提供感知与决策预测能力;
• 规则引擎或规划模块可能负责约束、合规与高层策略。
一句话记忆
人工智能 =(机器学习 + 规则推理 + 规划 + 其他智能技术)
机器学习 ⊂ 人工智能