[失业前端恶补算法]JavaScript leetcode刷题笔记 576. 出界的路径数

声明:只求用最简单的方法通过,不求优化,不喜勿喷

  1. dp求解
  2. 开一个三维的dp数组,第一维代表是的第n步的情况,其余两维代表的是整个m*n数组
  3. 将第0步的状态初始化为,startRow startColumn对应的那位是1,其余是0
  4. 之后遍历maxMove-1次(保证还有至少一步是可用的)
  5. 每次找到 i-1 步时,某位置上下左右的情况,把他们累加起来就是 第 i 步时能走到某位置的情况总数
  6. 之后检索某个位置上下左右是不是出界,如果出界,那么总数加上能走到这个位置的情况总数
  7. 记得在0步时也可以计算能不能出界
  8. 最后输出总数即可
  9. 优化todo
/**
 * @param {number} m
 * @param {number} n
 * @param {number} maxMove
 * @param {number} startRow
 * @param {number} startColumn
 * @return {number}
 */
var findPaths = function (m, n, maxMove, startRow, startColumn) {


    let dp = new Array();
    for (var i = 0; i <= maxMove; i++) {
        let t = new Array()
        for (var j = 0; j < m; j++) {
            let t1 = new Array(n).fill(0)
            t.push(t1)
        }
        dp.push(t)
    }


    dp[0][startRow][startColumn] = 1

    let sum = 0;

    if(maxMove == 0){
        return 0;
    }
    if (startRow == 0) {
        sum += 1
    }
    if (startRow == m - 1) {
        sum += 1
    }
    if (startColumn == 0) {
        sum += 1
    }
    if (startColumn == n - 1) {
        sum += 1
    }


    for (var i = 1; i < maxMove; i++) {
        for (var j = 0; j < m; j++) {
            for (var k = 0; k < n; k++) {
                let t = 0
                if (j > 0) {
                    t += dp[i - 1][j - 1][k]%1000000007;
                }
                if (j < m - 1) {
                    t += dp[i - 1][j + 1][k]%1000000007;
                }
                if (k > 0) {
                    t += dp[i - 1][j][k - 1]%1000000007;
                }
                if (k < n - 1) {
                    t += dp[i - 1][j][k + 1]%1000000007;
                }
                dp[i][j][k] = t%1000000007;;

                if (j == 0) {
                    sum += t%1000000007;
                }
                if (j == m - 1) {
                    sum += t%1000000007;
                }
                if (k == 0) {
                    sum += t%1000000007;
                }
                if (k == n - 1) {
                    sum += t%1000000007;
                }
            }
        }
    }
    return sum % 1000000007;
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

摸鱼老萌新

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值