保研复习笔记:线性代数

特征值、特征向量:

A x = λ x Ax=λx Ax=λx
矩阵的几何意义:线性变换(缩放、旋转、翻转、错切)
几何意义:进行A对应的线性变换后,特征向量x的方向不变,但大小可能改变

相似矩阵:

1、 P − 1 A P = B P^{-1}AP=B P1AP=B
同一个线性变换在不同基下的表达。(对于向量x,用B变换,相当于先用P转成用另一组基进行表示,再在那一组基下,用A变换,最后用 P − 1 P^{-1} P1转回原来的那一组基)
2、方阵可以相似对角化
P − 1 A P = B P^{-1}AP=B P1AP=B(B为与A相似的对角阵,主对角线上为特征值,P列向量为特征向量)

对称矩阵:

a i j = a j i a_{ij}=a_{ji} aij=aji
对称矩阵的不同特征值对应的特征向量两两正交(相同特征值可构造出对应个数的正交向量)
正交矩阵: Q T = Q − 1 Q^T=Q^{-1} QT=Q1(列向量为单位向量且两两正交,正交基向量)
对称矩阵的相似对角化: Q T A Q = B Q^TAQ=B QTAQ=B

二次型:

函数各项均为二次项,可以写成 X T A X X^TAX XTAX的形式。
标准型:只有平方项,没有混合项。
正交变换: X T A X = ( Q Y ) T A ( Q Y ) = Y T ( Q T A Q ) Y = Y T B Y = λ 1 y 1 2 + λ 2 y 2 2 + λ 3 y 3 2 X^TAX=(QY)^TA(QY)=Y^T(Q^TAQ)Y=Y^TBY=λ_1y_1^2+λ_2y_2^2+λ_3y_3^2 XTAX=(QY)TA(QY)=YT(QTAQ)Y=YTBY=λ1y12+λ2y22+λ3y32(B为对角阵)

正定矩阵:

特征值均为正<=>顺序主子式均为正<=>对应的标准二次型系数均为正
矩阵二阶导(海森矩阵)正定,则该矩阵有局部最大值

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值