线性代数Linear Algebra保研复习 冲冲冲!

线性代数 Linear Algebra

矩阵 Matrix

矩阵的乘法 A × B A\times B A×B r × A r\times A r×A

  • 矩阵 × \times ×矩阵:
image-20220709211540970
  • 矩阵 × \times ×标量:就是标量r和矩阵的每个元素都相乘

    image-20220709212457317
  • 矩阵乘法的性质:满足(左/右)分配律,结合律,不满足交换律

    转置: ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT

    用结合律可以简化多个矩阵相乘,先算结果维度小的部分

转置矩阵 A T A^T AT

A T A^T AT A A A的转置矩阵,就是将行列互换 a i j a_{ij} aij a j i a_{ji} aji互换位置

A A A= A T A^T AT A A A为对称矩阵

矩阵的逆 A − 1 A^{-1} A1

定义

如果 A A A为n阶方阵,存在n阶方阵 B B B使得 A B = B A = E AB=BA=E AB=BA=E,则 A A A为可逆矩阵,并称 B = A − 1 B=A^{-1} B=A1,为 A A A的逆

性质

A − 1 A^{-1} A1存在(矩阵可逆)等价于 ∣ A ∣ ≠ 0 |A|\neq0 A=0

  • 也等价于 A A A满秩(即 r ( A ) = n r(A)=n r(A)=n
  • 也等价于 A T A^T AT可逆

∣ A ∣ ≠ 0 |A|\neq0 A=0也可得 A A A可逆也等价于:

  • A A A标准型为单位矩阵/ A A A化成阶梯形矩阵没有零行
  • 齐次线性方程组 A X = 0 AX=0 AX=0只有零解

求解逆矩阵 A − 1 A^{-1} A1

一般常用:

  • 定义法

  • 初等变换法

    [ A ∣ E ] → [ E ∣ A − 1 ] [A|E]\to[E|A^{-1}] [AE][EA1],通过初等行变换将矩阵 [ A ∣ E ] [A|E] [AE] 左半边化成单位矩阵,右半边就是所求逆矩阵 A − 1 A^{-1} A1

[考]矩阵的秩 r ( A ) r(A) r(A)

相关定义:子矩阵 子式

子矩阵:从原矩阵截取的矩阵(包括其本身)

子式:子矩阵的行列式

r ( A ) r(A) r(A)的定义和性质

r ( A ) r(A) r(A)是矩阵A中不等于0的子式的最高阶数

等于 A A A化成行阶梯型矩阵后非零行的个数

  • 向量组的关系

    矩阵的秩等于它行/列向量组的秩

    向量组的秩定义为向量组的极大线性无关组所含向量数

  • 向量空间的关系(几何意义)矩阵的其他概念

    矩阵的秩等于它行/列空间的维数

  • 线性方程组解的关系:

    设A是m×n矩阵,若 r ( A ) < n r(A)<n r(A)n,则齐次线性方程组 A X = 0 AX=0 AX=0有基础解系,且每个基础解系都含 n − r n-r nr个解向量。

  • 线性变换的关系

矩阵的初等变换:

初等(行)变换的定义包括: elementary

  • 用非零数r乘以矩阵某一行
  • 把矩阵某行的k倍加到另一行
  • 互换矩阵两行的位置

性质:

  • 经过有限次初等(行)变换的矩阵相互(行)等价 A ∼ B A\sim B AB equivalence

    ​ 等价具有反身性,对称性,传递性

  • 矩阵的初等(行)变换 等同于 行列式的初等(行)变换 等同于 线性方程组的初等变换,都可运用Cramer法则求解方程组的根

单位矩阵 初等矩阵 等价标准型:

单位矩阵 E E E:主对角线全为1,其他部分全为0的方阵

初等矩阵: 单位矩阵通过一次初等变换得到的矩阵

​ 矩阵的一次初等变换等同于和一个初等矩阵相乘

任意矩阵总可以经过有限次初等变换化为等价标准型image-20220710173016532

此标准型只由矩阵大小m,n和矩阵的秩唯一确定

相关算法

快速矩阵乘法

​ 一般矩阵乘法(定义法)时间复杂度为 O ( N 3 ) O(N^3) O(N3) (方阵相乘)

​ 分块算法,Strassen 算法,Coppersmith-Winograd算法

快速矩阵幂

​ 相当于套用快速实数幂,就是矩阵+快速幂,依旧是分治方法:

image-20220709211225413

行列式 Determinant

本质是在一个方块矩阵上计算得到的标量

行列式运算性质

行列式的初等行变换:

  • 行列式某行乘以k等同于行列式乘以k(提取系数

  • 某行加上k倍另一行,行列式值不变

  • 互换任意两行,行列式变号

行列式值为0或者不为0 ∣ A ∣ = 0 |A|=0 A=0?

∣ A ∣ = 0 |A|=0 A=0:

image-20220710100022523

∣ A ∣ ≠ 0 |A|\neq 0 A=0:

image-20220710100039411

向量 Vector

本质:有序数组

概念

  • 线性组合和线性表示:
image-20220710181835335
  • 线性相关性(线性相关与线性无关)

    image-20220710182456973

性质

n维向量 β \beta β可以由n维向量组 α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm线性表示

与矩阵的关联:

image-20220710182702201 image-20220710182723154
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Kaze-1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值