ROC的全称是Receiver Operating Characteristic,也是模型评估中的重要概念之一。本文将结合 sklearn.metrics.roc_curve官方文档的例子来说明ROC曲线的绘制过程, 以及AUC的计算。
1) TPR和FPR
在前一篇文章里模型评估(一)—— 准确率(Accuracy),精确率(Precision),召回率(Recall),F1-Score的总结介绍过TP,TN,FP,FN和Recall,Precision的概念, 而本文要用到的指标是真阳性率:True Postive Rate(TPR)和假阳性率:False Postive Rate(FPR),计算公式分别为:
T P R = T P T P + F N , F P R = F P T N + F P TPR=\frac{TP}{TP+FN}, FPR=\frac{FP}{TN+FP} TPR=