模型评估(二)—— ROC, AUC, 和ROC曲线绘制过程


ROC的全称是Receiver Operating Characteristic,也是模型评估中的重要概念之一。本文将结合 sklearn.metrics.roc_curve官方文档的例子来说明ROC曲线的绘制过程, 以及AUC的计算。

1) TPR和FPR

在前一篇文章里模型评估(一)—— 准确率(Accuracy),精确率(Precision),召回率(Recall),F1-Score的总结介绍过TP,TN,FP,FN和Recall,Precision的概念, 而本文要用到的指标是真阳性率:True Postive Rate(TPR)和假阳性率:False Postive Rate(FPR),计算公式分别为:
T P R = T P T P + F N , F P R = F P T N + F P TPR=\frac{TP}{TP+FN}, FPR=\frac{FP}{TN+FP} TPR=

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值