文章目录
离散型随机变量(Discrete Random Variable)的概率分布
- 二项分布(Binomial Distribution) X ∼ B i n ( n , p ) X\sim Bin(n,p) X∼Bin(n,p)
比如扔n次硬币,每一次扔硬币都是互相独立的,结果只包含正面和反面两种结果,出现正面的概率为 p p p, 出现反面的概率是 q q q, p + q = 1 p+q=1 p+q=1。设出现正面的次数是 X X X, 那么
p ( X = x ) = C n x p x q n − x p(X=x)=C^x_np^xq^{n-x} p(X=x)=Cnxpxqn−x, E ( X ) = n p , V a r ( X ) = n p q E(X)=np, Var(X)=npq E(X)=np,Var(X)=npq - 泊松分布(Poisson Distribution) X ∼ P o i s ( λ ) X\sim Pois(\lambda) X∼Pois(λ)
一段时间内,事件发生的次数的概率。比如,一个小时内,5位顾客来店里的概率是多少?设顾客数为 X X X,一个小时内的顾客数平均是 λ \lambda λ, 来店里的顾客数就服从Poisson Distribution。
p ( X = x ) = λ e − λ x ! p(X=x)=\frac{\lambda e^{-\lambda}}{x!} p(X=x)=x!λe−λ , E ( X ) = λ , V a r ( X ) = λ E(X)=\lambda, Var(X)=\lambda E(X)=λ,Var(X)=λ
【当p趋近于0且n足够大时,Binomial Distribution近似等于Poisson Distribution。】
连续型随机变量(Continuous Random Variable)的概率分布
Probability Density Function or PDF: f ( x ) f(x) f(x)
Probability Mass Function or PMF: F ( x ) F(x) F(x)
F ( x ) = p ( X ≤ x ) = ∫ − ∞ x f ( t ) d t F(x)=p(X\leq x)=\int^x_{- \infty}f(t)dt F(x)=p(X≤x)=∫−∞xf(t)dt, f ( x ) = F ′ ( x ) f(x)=F^{'}(x) f(x)=F′(x)
p ( a < X < b ) = ∫ a b f ( x ) d x = F ( a ) − F ( b ) p(a<X<b)=\int^b_af(x)dx=F(a)-F(b) p(a<X<b)=∫abf(x)dx=F(a)−F(b),相当于density曲线下面在a和b之间的面积
期望与方差: