统计学复习笔记(二)—— 常见的概率分布&卡方分布,t分布,F分布和中心极限定理

离散型随机变量(Discrete Random Variable)的概率分布

  • 二项分布(Binomial Distribution) X ∼ B i n ( n , p ) X\sim Bin(n,p) XBin(n,p)
    比如扔n次硬币,每一次扔硬币都是互相独立的,结果只包含正面和反面两种结果,出现正面的概率为 p p p, 出现反面的概率是 q q q p + q = 1 p+q=1 p+q=1。设出现正面的次数是 X X X, 那么
    p ( X = x ) = C n x p x q n − x p(X=x)=C^x_np^xq^{n-x} p(X=x)=Cnxpxqnx E ( X ) = n p , V a r ( X ) = n p q E(X)=np, Var(X)=npq E(X)=np,Var(X)=npq
  • 泊松分布(Poisson Distribution) X ∼ P o i s ( λ ) X\sim Pois(\lambda) XPois(λ)
    一段时间内,事件发生的次数的概率。比如,一个小时内,5位顾客来店里的概率是多少?设顾客数为 X X X,一个小时内的顾客数平均是 λ \lambda λ, 来店里的顾客数就服从Poisson Distribution。
    p ( X = x ) = λ e − λ x ! p(X=x)=\frac{\lambda e^{-\lambda}}{x!} p(X=x)=x!λeλ , E ( X ) = λ , V a r ( X ) = λ E(X)=\lambda, Var(X)=\lambda E(X)=λ,Var(X)=λ

【当p趋近于0且n足够大时,Binomial Distribution近似等于Poisson Distribution。】

连续型随机变量(Continuous Random Variable)的概率分布

Probability Density Function or PDF: f ( x ) f(x) f(x)
Probability Mass Function or PMF: F ( x ) F(x) F(x)
F ( x ) = p ( X ≤ x ) = ∫ − ∞ x f ( t ) d t F(x)=p(X\leq x)=\int^x_{- \infty}f(t)dt F(x)=p(Xx)=xf(t)dt f ( x ) = F ′ ( x ) f(x)=F^{'}(x) f(x)=F(x)
p ( a < X < b ) = ∫ a b f ( x ) d x = F ( a ) − F ( b ) p(a<X<b)=\int^b_af(x)dx=F(a)-F(b) p(a<X<b)=abf(x)dx=F(a)F(b),相当于density曲线下面在a和b之间的面积
期望与方差
E ( X ) = ∫ − ∞ + ∞ x f ( x ) = μ E(X)=\int^{+\infty}_{-\infty}xf(x)=\mu E(X)=+xf(x)=μ
V a r ( X ) = ∫ − ∞ + ∞ [ x − E ( x ) ] 2 f ( x ) = σ 2 Var(X)=\int^{+\infty}_{-\infty}[x-E(x)]^2f(x)=\sigma^2 Var(X)=+[xE(x)]2f(x)=σ2

  • 正态分布(Normal Distribution) X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)

    f ( x ) = 1 σ 2 π e − 1 2 σ 2 ( x − μ ) 2 f(x)=\frac{1}{\sigma \sqrt{2\pi}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2} f(x)=σ2π 1e2σ21(xμ)2, μ \mu μ决定图像中心位置,当 x = μ x=\mu x=μ时, f ( x ) f(x) f(x)达到最大值, f ( μ ) = 1 2 π σ f(\mu)=\frac{1}{2\pi\sigma} f(μ)=2πσ1 σ \sigma σ越大,曲线越平缓。

  • 标准正态分布(Standard Normal Distribution) Z = X − μ σ ∼ N ( 0 , 1 ) Z=\frac{X-\mu}{\sigma}\sim N(0,1) Z=σXμN(0,1)
    P D F : φ ( x ) = 1 2 π e − x 2 2 PDF: \varphi(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} PDF:φ(x)=2π 1e2x2
    P M F : ϕ ( x ) = ∫ − ∞ x 1 2 π e − t 2 2 d t PMF:\phi(x)=\int^x_{-\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt PMF:ϕ(x)=x2π 1e2t2dt
    正态分布概率问题中,将一般正态分布转化为标准正态分布后就可以查表,以及: ϕ ( − x ) = 1 − ϕ ( x ) \phi(-x)=1-\phi(x) ϕ(x)=1ϕ(x)

基于正态分布的几个分布

统计量(Statistics): X 1 , X 2 , . . . X n X_1,X_2,...X_n X1,X2,...Xn是一个样本,那么由这些样本构造的函数: T ( X 1 , X 2 , . . . X n ) T(X_1,X_2,...X_n) T(X1,X2,...Xn)是样本的统计量。常见的统计量包括样本均值,样本方差等。
抽样分布(Sampling Distribution): 简单来说就是样本统计量的分布。在正态总体的情况下,可以推导出统计三大分布: χ 2 \chi^2 χ2分布, t t t分布, F F F分布。

  • 卡方 ( χ 2 ) (\chi^2) χ2分布(Chi-square Distribution)

如果 X 1 , X 2 , . . . X n X_1,X_2,...X_n X1,X2,...Xn 相互独立且服从标准正态分布,那么 Σ i = 1 n X i 2 \Sigma_{i=1}^nX_i^2 Σi=1nXi2服从自由度(Degree of Freedom, or df)为n χ 2 \chi^2 χ2分布 X 2 ∼ χ ( n ) X^2\sim \chi(n) X2χ(n)。如果 X 1 2 ∼ χ 2 ( n 1 ) X_1^2\sim \chi^2(n_1) X12χ2(n1) X 2 2 ∼ χ 2 ( n 2 ) X_2^2\sim \chi^2(n_2) X22χ2(n2),那么 X 1 2 + X 2 2 ∼ χ 2 ( n 1 + n 2 ) X_1^2+X_2^2\sim \chi^2(n_1+n_2) X12+X22χ2(n1+n2)。不同的自由度下,卡方分布的 P D F PDF PDF如下图:
chi square

  • t t t分布(t Distribution)

如果 X X X服从标准正态分布 Y Y Y服从自由度为 n n n卡方分布,且 X X X Y Y Y相互独立,那么 t = X Y / n t=\frac{X}{\sqrt{Y/n}} t=Y/n X服从自由度为 n n n t t t分布 t ∼ t ( n ) t\sim t(n) tt(n) t t t分布的PDF图像和正态分布很像,都是钟型,但 t t t分布的尾部更厚一点,说明 t t t分布比正态分布更容易观测到极端值。自由度越高,越接近正态分布。一般认为 n ≥ 30 n\geq30 n30时基本可以看做正态分布。不同自由度下的 t t t分布和标准正态分布的 P D F PDF PDF如下:
t

  • F F F分布(F Distribution)

如果 V 1 , V 2 V_1,V_2 V1,V2相互独立且满足自由度分别为 n 1 n_1 n1 n 2 n_2 n2卡方分布,那么 X = V 1 / n 1 V 2 / n 2 X=\frac{V_1/n_1}{V_2/n_2} X=V2/n2V1/n1满足自由度为 n 1 n_1 n1 n 2 n_2 n2(两个自由度的位置不能交换)的 F F F分布 X ∼ F ( n 1 , n 2 ) X\sim F(n_1,n_2) XF(n1,n2)。以及,如果 X ∼ t ( n ) X\sim t(n) Xt(n), 那么 X 2 ∼ F ( 1 , n ) X^2\sim F(1,n) X2F(1,n)。不同自由度下的 F F F分布PDF如下图:
F

中心极限定理(Central Limit Theorem)

样本均值 X ˉ \bar{X} Xˉ是一个常见的统计量,前面说过抽样分布时是样本统计量的分布,而在总体服从 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)的情况下, X ˉ \bar{X} Xˉ的抽样分布也是正态分布: X ˉ ∼ N ( μ , σ 2 n ) \bar{X}\sim N(\mu,\frac{\sigma^2}{n}) XˉN(μ,nσ2)。而当总体不服从正态分布的情况下,根据中心极限定理,如果 n n n足够大, X ˉ \bar{X} Xˉ的分布也近似正态分布。设总体均值为 μ \mu μ, 总体方差为 σ 2 \sigma^2 σ2, 抽取样本量为 n n n的样本, n n n足够大时, X ˉ \bar{X} Xˉ近似服从 N ( μ , σ 2 n ) N(\mu,\frac{\sigma^2}{n}) N(μ,nσ2),或 X ˉ − μ σ / n \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} σ/n Xˉμ近似服从 N ( 0 , 1 ) N(0,1) N(0,1)

····················未完待续····················

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值