代码随想录刷题day16

本文介绍了使用递归方法解决三个关于二叉树的问题:1)计算二叉树的最大深度,采用后序遍历,返回左右子树中最大深度加1;2)找出二叉树的最小深度,需处理空子树特殊情况,返回到最近叶子节点的最短路径长度;3)计算完全二叉树的节点总数,递归计算左右子树节点数并求和。
摘要由CSDN通过智能技术生成

关于二叉树的递归求解三道很相似的题目

题目:二叉树的最大深度
题解:

1)使用迭代法,二叉树的深度就是根节点的高度。就是在左右子树中深度最大的那个+1
2)注意用的是后序遍历,左右中,这样才能够从下往上计算二叉树的高度。

代码:
class Solution(object):dan
    def maxDepth(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        def digui(cur):
            if not cur:
                return 0
            leftdepth = digui(cur.left)
            rightdepth = digui(cur.right)
            return 1+max(leftdepth, rightdepth)
        
        return digui(root)
题目:二叉树的最小深度
题解

和上一题的解题思路有区别,不能直接去求左右子树中深度更小的,因为如果碰到极端情况,当一个子树为空,但它的最小深度也不是1。

  1. 要因此要特殊情况特殊判断,判断左右子树是否有一个为空的情况
    2)最小深度是从根节点到最近叶子节点的最短路径上的节点数量。注意是叶子节点。
    什么是叶子节点,左右孩子都为空的节点才是叶子节点!
代码:
class Solution(object):
    def minDepth(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        def digui(cur):
            if not cur:
                return 0
            leftdepth = digui(cur.left)
            rightdepth = digui(cur.right)
            if cur.left and not cur.right:
                return 1 + leftdepth
            elif cur.right and not cur.left:
                return 1 + rightdepth
            else:
                return 1+min(leftdepth, rightdepth)
        
        return digui(root)
题目:完全二叉树的节点个数
题解:

用迭代分别计算左右子树的节点个数然后求和

代码:
class Solution(object):
    def countNodes(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        def digui(cur):
            if not cur:
                return 0
            leftnum = digui(cur.left)
            rightnum = digui(cur.right)
            return leftnum + rightnum + 1
        
        return digui(root)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值