清华团队破解具身智能Scaling Law,GPT时刻在即!宁德时代联创终于出手

清华团队破解具身智能Scaling Law,GPT时刻在即!宁德时代联创终于出手

新智元 新智元 2024年11月11日 13:06 北京

图片

【新智元导读】半年两次大融资后,这家具身智能黑马再次获得融资!作为柏睿资本首次投资的具身智能企业,千寻智能不仅拥有出身自伯克利系联创,在技术、硬件、商业化上,也让人极有信心。

最近,我们意外发现,具身智能领域的明星初创公司千寻智能,悄悄完成了工商变更。

根据工商信息显示,本轮融资由柏睿资本独家投资。至此,千寻智能已经在半年多时间里获得了三次大额融资,一跃成为具身智能领域明星公司之一。

值得一提的是,柏睿资本是宁德时代联合创始人,副董事长李平创立的产业投资基金。

全国具身智能领域多家明星,为何首次

### Scaling Law in Computer Science and Machine Learning In the context of computer science and machine learning, scaling laws describe how various performance metrics change as a function of model size or dataset scale. These laws provide insights into resource allocation and optimization strategies for training large-scale models. #### Definition and Characteristics A scaling law typically expresses relationships between computational resources (such as number of parameters, data points, FLOPs), time complexity, and accuracy improvements. For instance, increasing the width or depth of neural networks often leads to better generalization capabilities up until certain limits[^1]. #### Applications One prominent application area involves optimizing deep learning architectures by predicting optimal sizes based on available hardware constraints while maintaining desired levels of precision. Another use case includes understanding trade-offs when designing systems that require balancing speed versus quality considerations during inference phases[^2]. Additionally, these principles guide researchers towards identifying bottlenecks within complex pipelines involving multiple interacting components such as those found in retrieval-augmented generation frameworks like RAG[^3]. ```python import numpy as np from matplotlib import pyplot as plt def plot_scaling_law(): # Example showing relationship between model params & test error rate param_counts = [10**i for i in range(4)] errors = [np.exp(-p/1e5)+0.1 for p in param_counts] plt.plot(param_counts, errors) plt.xscale('log') plt.xlabel('Number of Parameters') plt.ylabel('Test Error Rate') plt.title('Hypothetical Scaling Law Demonstration') plt.show() plot_scaling_law() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

医疗AI强化曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值