研究一个因变量、与两个或两个以上自变量的回归。亦称为多元线性回归,是反映一种现象或事物的数量依多种现象或事物的数量的变动而相应地变动的规律。建立多个变量之间线性或非线性数学模型数量关系式的统计方法。
相关数据:
链接: https://pan.baidu.com/s/1Qv9OieI5R5zu-jbKU3bLZg?
pwd=eyzh 提取码: eyzh
复制这段内容后打开百度网盘手机App,操作更方便哦
相关概念这里不做过多的解释,需要的可以自行查找,这里只提供机器学习该模型的用法:
以预测波士顿房价为例:
1.获取数据:"D:\mlData\house_data.csv"文件存放的地址,df.head()指定记录数
# 1、读取数据
df=pd.read_csv("D:\mlData\house_data.csv")
df.head(10) #指定前十条记录数
CRIM | ZN | INDUS | CHAS | NOX | RM | AGE | DIS | RAD | TAX | PTRATIO | B | LSTAT | MEDV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.00632 | 18.0 | 2.31 | 0 | 0.538 | 6.575 | 65.2 | 4.0900 | 1 | 296 | 15.3 | 396.90 | 4.98 | 24.0 |
1 | 0.02731 | 0.0 | 7.07 | 0 | 0.469 | 6.421 | 78.9 | 4.9671 | 2 | 242 | 17.8 | 396.90 | 9.14 | 21.6 |
2 | 0.02729 | 0.0</ |