机器学习—多元线性回归案例

本文介绍了使用机器学习中的多元线性回归模型来预测波士顿地区的房价。通过加载数据、特征工程、数据集划分、模型训练和模型评估等步骤,详细展示了如何应用该模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        研究一个因变量、与两个或两个以上自变量的回归。亦称为多元线性回归,是反映一种现象或事物的数量依多种现象或事物的数量的变动而相应地变动的规律。建立多个变量之间线性非线性数学模型数量关系式统计方法

相关数据:

链接: https://pan.baidu.com/s/1Qv9OieI5R5zu-jbKU3bLZg?

pwd=eyzh 提取码: eyzh

复制这段内容后打开百度网盘手机App,操作更方便哦

相关概念这里不做过多的解释,需要的可以自行查找,这里只提供机器学习该模型的用法:

以预测波士顿房价为例:

1.获取数据:"D:\mlData\house_data.csv"文件存放的地址,df.head()指定记录数


# 1、读取数据
df=pd.read_csv("D:\mlData\house_data.csv")

df.head(10) #指定前十条记录数
CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT MEDV
0 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.98 24.0
1 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.14 21.6
2 0.02729 0.0</
### 多元线性回归方程概述 多元线性回归是一元线性回归的扩展,旨在分析一个因变量\( Y \)与两个或更多自变量\((X_1, X_2, ..., X_n)\)之间的线性关系[^1]。该模型假设因变量 \(Y\) 是这些自变量的一个线性组合再加上一个误差项。 具体来说,对于给定的数据集,如果存在多个特征向量,则可以通过下面的形式来表达这种关系: \[ Y = \beta_0 + \beta_1X_1 + \beta_2X_2 + ... + \beta_nX_n + \epsilon \] 其中, - \(X_i (i=1,...,n)\) 表示各个输入特征; - \(\beta_i (i=0,...,n)\) 称作权重参数,也即回归系数; - \(\epsilon\) 代表随机噪声或者说未解释部分; 为了找到最佳拟合直线,通常采用最小二乘法估计上述公式的未知参数\(\beta_i\),使得预测值与真实观测值之间差异平方和达到最小化。 ### Python 实现案例 以下是利用 `scikit-learn` 库来进行简单多元线性回归建模的例子: ```python from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression import pandas as pd # 假设 df 已经是一个包含了 'feature1', 'feature2' 和 'target' 列名的数据框 df = pd.read_csv('data.csv') # 定义特征矩阵 X 及标签 y X = df[['feature1', 'feature2']] y = df['target'] # 将数据分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y) # 创建并训练模型 model = LinearRegression() model.fit(X_train, y_train) # 输出模型截距以及各特征对应的斜率(回归系数) print(f"Intercept: {model.intercept_}") for i, col in enumerate(['feature1', 'feature2']): print(f"Coefficient of {col}: {model.coef_[i]}") # 使用测试集评估模型性能 score = model.score(X_test, y_test) print(f"Model R-squared score on test set is {score:.4f}.") ``` 这段代码展示了如何加载数据、分割成训练/验证集合、创建线性回归对象、拟合模型,并最终打印出所得到的最佳拟合平面的相关信息(包括截距和每个维度上的斜率),同时也计算了决定系数R²得分以衡量模型的好坏程度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

好漂亮的妹妹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值