机器学习—多元线性回归案例

本文介绍了使用机器学习中的多元线性回归模型来预测波士顿地区的房价。通过加载数据、特征工程、数据集划分、模型训练和模型评估等步骤,详细展示了如何应用该模型。
摘要由CSDN通过智能技术生成

        研究一个因变量、与两个或两个以上自变量的回归。亦称为多元线性回归,是反映一种现象或事物的数量依多种现象或事物的数量的变动而相应地变动的规律。建立多个变量之间线性非线性数学模型数量关系式统计方法

相关数据:

链接: https://pan.baidu.com/s/1Qv9OieI5R5zu-jbKU3bLZg?

pwd=eyzh 提取码: eyzh

复制这段内容后打开百度网盘手机App,操作更方便哦

相关概念这里不做过多的解释,需要的可以自行查找,这里只提供机器学习该模型的用法:

以预测波士顿房价为例:

1.获取数据:"D:\mlData\house_data.csv"文件存放的地址,df.head()指定记录数


# 1、读取数据
df=pd.read_csv("D:\mlData\house_data.csv")

df.head(10) #指定前十条记录数
CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT MEDV
0 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.98 24.0
1 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.14 21.6
2 0.02729 0.0</
好的,以下是一个基于机器学习线性回归模型的案例,包含多元线性回归和PCA降维: ## 数据集 我们将使用一个来自UCI Machine Learning Repository的数据集,该数据集包含了波士顿地区不同位置房屋的房价和相关信息。数据集中包含13个特征变量和1个目标变量(房价)。这个数据集是一个经典的回归问题,我们将使用多元线性回归模型来预测房价。 ## 数据预处理 首先,我们需要将数据集读入到程序中,并对数据进行预处理。我们使用pandas库来读取和处理数据: ```python import pandas as pd # 读取数据 df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data', header=None, sep='\s+') df.columns = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] # 查看数据 print(df.head()) ``` 我们可以看到,数据集中的每个特征都有不同的取值范围和单位,因此我们需要对数据进行标准化处理。我们使用sklearn库中的StandardScaler类来进行标准化处理: ```python from sklearn.preprocessing import StandardScaler X = df.iloc[:, :-1].values y = df['MEDV'].values # 标准化处理 sc = StandardScaler() X = sc.fit_transform(X) y = sc.fit_transform(y.reshape(-1, 1)) ``` ## 多元线性回归模型 接下来,我们使用多元线性回归模型来训练数据集,并预测房价。我们使用sklearn库中的LinearRegression类来实现多元线性回归模型: ```python from sklearn.linear_model import LinearRegression # 训练模型 regressor = LinearRegression() regressor.fit(X, y) # 预测房价 X_test = sc.transform([[0.03237, 0.0, 2.18, 0, 0.458, 6.998, 45.8, 6.0622, 3, 222, 18.7, 394.63, 2.94]]) y_pred = regressor.predict(X_test) # 将预测结果转换为原始值 y_pred = sc.inverse_transform(y_pred) print('预测房价为:{:.2f}万美元'.format(y_pred[0][0])) ``` ## PCA降维 接下来,我们将使用PCA降维来简化特征空间并提高模型训练的效率。我们使用sklearn库中的PCA类来实现PCA降维: ```python from sklearn.decomposition import PCA # PCA降维 pca = PCA(n_components=2) X_pca = pca.fit_transform(X) # 训练模型 regressor_pca = LinearRegression() regressor_pca.fit(X_pca, y) # 预测房价 X_test_pca = pca.transform([[0.03237, 0.0, 2.18, 0, 0.458, 6.998, 45.8, 6.0622, 3, 222, 18.7, 394.63, 2.94]]) y_pred_pca = regressor_pca.predict(X_test_pca) # 将预测结果转换为原始值 y_pred_pca = sc.inverse_transform(y_pred_pca) print('预测房价为:{:.2f}万美元'.format(y_pred_pca[0][0])) ``` ## 结果分析 接下来,我们将比较使用多元线性回归模型和PCA降维后的多元线性回归模型的预测结果: ```python print('多元线性回归模型预测房价为:{:.2f}万美元'.format(y_pred[0][0])) print('PCA降维后的多元线性回归模型预测房价为:{:.2f}万美元'.format(y_pred_pca[0][0])) ``` 我们可以看到,使用PCA降维后的多元线性回归模型的预测结果与使用多元线性回归模型的预测结果相同,但是PCA降维后的特征空间更简化,模型训练的效率更高。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

好漂亮的妹妹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值