机器学习算法(8)之多元线性回归分析理论详解

本文详细介绍了多元线性回归分析,包括回归分析的定义、七种常见回归算法(如线性回归、逻辑回归、岭回归等)以及如何选择合适的回归模型。文中特别强调了在实际应用中需关注的共线性问题,如多重共线性的识别与解决方法,并提供了多种评估模型的指标和策略。
摘要由CSDN通过智能技术生成

前言:当影响因变量的因素是多个时候,这种一个变量同时与多个变量的回归问题就是多元回归,分为:多元线性回归和多元非线性回归。线性回归(Linear regressions)和逻辑回归(Logistic regressions)是人们学习算法的第一个预测模型。因此它们很常见,还有许多分析人员认为它们是仅有的回归模型,部分分析师认为它们是所有回归模型中最重要的。 事实上有无数的回归模型都能被使用,每种形式的回归模型都有它独特且重要的应用场景。在这篇文章里以简单的方式解释最常用的7种回归模型,通过这篇文章,对回归模型有一种广泛性的了解,取而代之的是希望能在每个场景合适的使用linear / logistic regression。


一、回归分析(Regression Analysis)定义与分类

        回归分析(Regression Analysis)是一种统计学上分析数据的方法目的在于了解两个或多个变量间是否相关、相关方向与强度,并建立数学模型以便观察特定变量来预测研究者感兴趣的变量。更具体的来说,回归分析可以帮助人们了解在只有一个自变量变化时因变量的变化量。一般来说,通过回归分析我们可以由给出的自变量估计因变量的条件期望。回归分析是建立因变数  Y

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

且行且安~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值