启发式算法
weixin_46509574
这个作者很懒,什么都没留下…
展开
-
Python实现模拟退火算法
import math from random import random import numpy as np import matplotlib.pyplot as plt ''' 这里traditional_monituihuo加三维成像与monituihuo加三维成像的方法不同, 因为这里的x,y的取值是一个一个取的,而不是直接取很多 所以要进行成像的话,需要单独生成x,y值 ''' def func(x1, x2): # 函数优化问题 # res = 4 * x ** 2 - 2..原创 2021-12-05 15:46:12 · 439 阅读 · 1 评论 -
启发式算法之遗传算法
Python实现: 参考:(32条消息) 遗传算法详解及代码实现_呆小呆_的博客-CSDN博客_遗传算法代码 import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D DNA_SIZE = 24 POP_SIZE = 200 CROSSOVER_RATE = 0.8 # crossover:交叉 MUTATION原创 2021-12-05 15:34:37 · 335 阅读 · 0 评论 -
PSO粒子群算法的Python实现
本文基于这篇博文最优化算法之粒子群算法(PSO)_青萍之末的博客-CSDN博客_粒子群算法:的内容讲解,基于此进行了Python实现,代码如下: import numpy as np from random import * ''' # 初始化粒子 # 对于位置,定义一个dict,这个dict当中有四个量,分别为:过去的坐标,过去的值,更新后的坐标,更新后的值;这样更新的时候只需要更新过去的坐标,产生的新值直接赋值给更新后的坐标 # 对于速度,定义一个dict,包含过去的速度和现在的速度即可 '''原创 2021-12-05 15:06:36 · 359 阅读 · 0 评论