一、简介
霍夫曼树常处理符号编写工作。根据整组数据中符号出现的频率高低,决定如何给符号编码。如果符号出现的频率越高,则给符号的码越短,相反符号的号码越长。
相关术语
路径:从书中一个节点到另一个节点之间的分支构成这两个节点的路径。
路径长度:即路径上有多少个分支。
树的路径长度:从树根到每一个节点的路径长度之和。
带权路径长度:从根节点到叶子节点的路程长度与该节点权值的积。
树的带权路径长度:树中所有带权叶子节点的路径长度之和。
霍夫曼编码就是再霍夫曼树上进行实现的。
从树根开始,从待译电文中逐个取码。若编码为0,就往左走;编码为1,就往右走,一旦到达了叶子节点,就是译出了一个字符;在从根出发,直到电文结束。

T:00 ;:00 A:10 C:110 S:111
参考图1:
电文是{CAS;CAT;SAT;AT}
编码就是11010111011101000011111000011000
电文如果是1101000
译文就是CAT
假设我们要给一个英文单字"FORGET"进行霍夫曼编码。
演算过程
(一)进行编码前,要先创建一个霍夫曼树。
⒈将每个英文字母依照出现频率由小排到大,最小在左,如Fig.1;
⒉每个字母都代表一个终端节点(叶节点),比较F.O.R.G.E.T六个字母中每个字母的出现频率,将最小的两个字母频率相加合成一个新的节点。如Fig.2所示,发现F与O的频率最小,故相加2+3=5;
⒊比较5.R.G.E.T,发现R与G的频率最小,故相加4+4=8;
⒋比较5.8.E.T,发现5与E的频率最小,