Cachel wood
这个作者很懒,什么都没留下…
展开
-
python redis使用教程
缓存的基本思路是:首先检查数据是否在缓存中,如果存在则直接返回,否则从数据库中查询数据并将其存储到缓存中,以便下次快速访问。可以看到,第一次查询时从“数据库”获取了数据并将其缓存,第二次查询时则直接从缓存中读取数据,避免了耗时的数据库查询操作。设置带有过期时间的键值对之后及时输出,可以查看到键值对的值,但是当超过生命时间之后,则返回。中,事务是一组命令的集合,这些命令将作为一个单独的操作进行执行。方法向指定的频道发布消息,并打印发布的消息内容和频道名称。最后,创建了一个新的线程来执行订阅操作,然后调用。原创 2024-10-10 16:20:59 · 1045 阅读 · 0 评论 -
pytorch使用常用函数model.eval()、torch.zero_grad()和loss.backward()
进行深度学习建模的过程中,需要在训练和评估两种模式间切换。训练模式对应了模型的学习阶段,评估模式则是为了检验模型的性能。函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行。这两个方法的使用至关重要,因为它们会影响到某些层的运作方式,例如。因为不用计算和存储梯度,从而可以计算得更快,也可以使用更大的。:上下文管理器,以确保在评估阶段不会进行不必要的反向传播计算。只负责通过梯度下降进行优化,而不负责产生梯度,梯度是。,所有的梯度就会自动运算,原创 2024-10-06 17:06:34 · 140 阅读 · 0 评论 -
pytorch常用函数view、sum、sequeeze、cat和chunk
指定dim=1维度上的维度为2,则可以自动调整dim=0维度的长度。,代表自动调整这个维度上的元素个数,以保证元素的总数不变。用途:进行维度压缩,去掉。张量按照指定维度进行拆分。原创 2024-10-05 14:38:41 · 335 阅读 · 0 评论 -
pytorch使用LSTM模型进行股票预测
从损失函数可以看出,模型在大概30个。的股票:佳力图,时间跨度为。将数据处理为需要的格式。的时候已经接近收敛。原创 2024-10-03 21:40:05 · 535 阅读 · 0 评论 -
BERT-BiLSTM-CRF模型实战
模型上进行预训练用于中文命名实体识别。官方网站下载模型到本地指定路径。配置为目前的模型路径。输入数据格式请处理成。原创 2024-09-23 15:22:54 · 525 阅读 · 0 评论 -
bert系列模型区别(bert-base-cased/bert-base-uncased/bert-base-chinese)
是一种预训练的语言模型,由Google开发并于2018年发布。BERT的目标是通过将大量无标注的文本数据进行预训练,来学习通用的语言表示。预训练阶段使用了和。在MLM任务中,BERT会随机遮盖输入文本中的一些单词,并通过上下文中的其他单词来预测这些被遮盖的单词。这个任务可以帮助BERT学习到对上下文信息敏感的单词表示。在NSP任务中,BERT会接收两个句子作为输入,并预测这两个句子是否是连续的。这个任务可以帮助BERT学习到对句子级别的上下文信息进行建模。通过这两个任务的预训练,BERT。原创 2024-09-23 15:00:49 · 400 阅读 · 0 评论 -
基于BERT模型的cnews数据集微调文本多分类模型
model.py:定义BERT分类器# Bert# 定义BERT模型# 定义分类器# BERT的输出# 取[CLS]位置的pooled output# 分类# 返回softmax后结果# Bert+BiLSTM,用法与BertClassifier一样,可直接在train里面调用self.classifier = nn.Linear(bert_config.hidden_size*2, num_labels) # 双向LSTM 需要乘以2。原创 2024-09-04 20:34:52 · 544 阅读 · 0 评论 -
查询GPU版本以及PyTorch中使用单GPU和多GPU
多GPU是指使用多个显卡来同时进行计算,以加速深度学习模型的训练和推断。每个GPU都有自己的内存和计算能力,通过同时利用多个GPU可以并行地执行模型的计算,从而提高整体的计算效率。原创 2024-09-04 20:10:39 · 613 阅读 · 0 评论 -
注意力机制和transformer
文章目录非参注意力池化层参数化的注意力机制注意力分数拓展到高维度Additive AttentionScaled Dot-Product Attention总结使用注意力机制的seq2seq加入注意力 Encoder总结自注意力机制自注意力跟CNN,RNN对比位置编码位置编码矩阵相对位置信息总结transformerTransformer架构多头注意力有掩码的多头注意力基于位置的前馈网络层归一化信息传递预测总结非参注意力池化层给定数据(xi,yi),i=1,……,n(x_i,y_i),i = 1,…原创 2022-01-07 10:21:46 · 1545 阅读 · 0 评论 -
目标识别和文字检测算法 Faster R-CNN、CTPN
Faster R-CNN 目标检测算法Towards Real-Time Object Detection with Region Proposal NetworksR-CNN:Regions with CNN featuresInput imageExtract region proposals(~2k)Compute CNN featuresClassify regionsIoU Intersection over Union测量在特定数据集中检测相应物体准确度的一个标准预测范原创 2021-12-12 12:46:13 · 1234 阅读 · 0 评论 -
深度学习:多层感知机
文章目录多层感知机 multilayer perceptron线性模型可能出错在网络中加入隐藏层从线性到非线性多层感知机 multilayer perceptron线性模型可能出错线性模型的单调性并不是所有现实例子都满足的,相反,许多例子都违反了单调性的条件。在网络中加入隐藏层我们可以通过在网络中加入一个或多个隐藏层来克服线性模型的限制,使其能处理更普遍的函数关系类型。要做到这一点,最简单的方法是将许多全连接层堆叠在一起。每一层都输出到上面的层,直到生成最后的输出。我们可以把前L−1L−1L−1层原创 2021-09-20 18:24:06 · 958 阅读 · 0 评论 -
信息论中的熵和惊异
文章目录信息论基础熵惊异重新审视交叉熵信息论基础信息论涉及编码、解码、发送以及尽可能简洁地处理信息或数据。熵信息论的核心思想是量化数据中的信息内容,在信息论中,该数值被称为分布PP的熵(entropy)。可以通过以下方程得到:H(P)=∑j−P(j)logP(j)H(P) = \sum_j -P(j)logP(j)H(P)=j∑−P(j)logP(j)信息论的基本定理之一指出,为了对从分布p中随机抽取的数据进行编码,我们至少需要H[P]纳特(nat)对其进行编码。“纳特”相当于位,但是对数原创 2021-09-20 15:42:16 · 415 阅读 · 0 评论 -
向量范数和矩阵范数
线性代数中最有用的一些运算符是范数(norm)。非正式地说,一个向量的范数告诉我们一个向量有多大。 这里考虑的大小(size)概念不涉及维度,而是分量的大小。在线性代数中,向量范数是将向量映射到标量的函数 f 。向量范数要满足一些属性。给定任意向量 x ,第一个性质说,如果我们按常数因子 α 缩放向量的所有元素,其范数也会按相同常数因子的绝对值缩放:f(αx)=αf(x)f(\alpha x) = \alpha f(x)f(αx)=αf(x)第二个性质是我们熟悉的三角不等式:f(x+y)≤f(x)原创 2021-09-18 21:45:42 · 321 阅读 · 0 评论 -
tensorflow基本使用
文章目录理解tensorflowtensorflow程序阶段tensorflow使用实例交互式会话(interactivesession)Feed操作理解tensorflow使用图(graph)来表示计算任务在被称为会话(session)的上下文(context)中执行图使用tensor(张量)表示数据通过变量(variable)维护状态使用feed和fetch可以为任意的操作(arbitrary operation)赋值或者从其中获取数据tensorflow是一个编程系统,使用图来表示计原创 2021-08-30 21:58:48 · 1261 阅读 · 0 评论 -
吴恩达:序列模型(Sequence Models)
文章目录1.1 为什么选择序列模型1.2 数学符号1.3 循环神经网络Recurrent Neural Networks1.4 通过时间的反向传播1.5 不同类型的循环神经网络1.6 语言模型和序列生成1.7 新序列采样1.8 带有神经网络的梯度消失1.9 GRU单元Gate Recurrent Unit1.10 长短期记忆(LSTM)1.11 双向神经网络Bidirectional RNN1.12 深层循环神经网络2.1 词汇表征 Word representation2.2 使用词嵌入2.3 词嵌入的特原创 2021-07-26 10:59:08 · 1209 阅读 · 1 评论 -
吴恩达:卷积神经网络(Convolutional Neural Networks)
文章目录1.1 计算机视觉1.2 边缘检测示例1.3 更多的边缘检测内容1.4 padding1.5 卷积步长 strided convolution1.6 三维卷积1.7 单层神经网络1.8 简单卷积网络示例1.9 池化层1.10 卷积神经网络示例1.11 为什么使用卷积?2.1 为什么要进行实例研究?2.2 经典网络2.3 残差网络2.4 残差网络为什么有用?2.5 网络中的网络以及1x1卷积2.6 谷歌inception网络简介2.7 inception网络2.8 使用开源的实现方案2.9 迁移学习2原创 2021-07-24 15:32:43 · 1084 阅读 · 1 评论 -
吴恩达:结构化机器学习项目 (Structuring Machine Learning Projects)
文章目录1.1 为什么是ML策略1.2 正交化1.3 单一数字评估指标1.4 满足和优化指标1.5 训练、开发、测试集的划分1.6 开发集和测试集的大小1.7 什么时候应该改变开发、测试集和指标1.8 为什么是人的表现1.9 可避免偏差available bias1.10 理解人的表现1.11 超越人的表现1.12 改善你的模型的表现2.1 进行误差分析2.2 清除标注错误的数据2.3 快速搭建你的第一个系统,并迅速迭代2.4 在不同的划分上进行训练和测试2.5 不匹配数据划分的偏差和方差2.6 定原创 2021-07-18 22:51:11 · 671 阅读 · 1 评论 -
吴恩达:改善深层神经网络:超参数调试、正则化以及优化(Improving Deep Neural Networks:Hyperparameter tuning, Regularizatio)
文章目录1.1 训练、开发、测试集1.2 偏差、方差1.3 机器学习基础1.4 正则化1.5 为什么正则化可以减少过拟合?1.6 dropout随机失活正则化1.7 理解dropout1.8 其他正则化方法1.9 归一化输入1.10 梯度消失和梯度爆炸1.11 神经网络的权重初始化1.12 梯度的数值逼近1.13 梯度检验1.14 关于梯度检验实现的注记2.1 mini-batch 梯度下降法2.2 理解mini-batch 梯度下降法2.3 指数加权平均2.4 理解指数加权平均2.5 指数加原创 2021-07-14 22:06:07 · 526 阅读 · 0 评论 -
吴恩达:神经网络和深度学习(Neural Networks and Deep Learning)
文章目录1.1欢迎1.2 什么是神经网络1.3 用神经网络进行监督学习1.4 为什么深度学习会兴起?2.1 二分分类2.2 logistic回归2.3 logistic回归损失函数 logistic regression cost function2.4 梯度下降法 gradient descent2.5 导数2.6 更多导数的例子2.7计算图 computation graph2.8 使用计算图求导2.9 logistic回归中的梯度下降法2.10 m个样本的梯度下降2.11 向量化 vectoriza原创 2021-07-10 23:28:42 · 1101 阅读 · 4 评论 -
GitHub爆款项目,去马赛克软件Depix使用
E:\Depix-main>python depix.py -p images/testimages/testimage3_pixels.png -s images/searchimages/debruinseq_notepad_Windows10_closeAndSpaced.png -o output.pngINFO:root:Loading pixelated image from images/testimages/testimage3_pixels.pngINFO:root:Loadin原创 2021-01-15 11:06:15 · 8262 阅读 · 1 评论 -
图片标题生成器(literature:Show and Tell: A Neural Image Caption Generator)
文章目录NICLSTMCodingBeam SearchNIC图片标题生成器是基于CNN+LSTM的一种神经网络系统,以文献《Show and Tell: A Neural Image Caption Generator》为参考,作者构造了一种叫做NIC(Neural Image Caption)神经网络系统,以CNN提取图片特征,最后一个隐藏层(hidden layer)作为LSTM的输入。LSTMLSTM(Long Short-term Memory)是一种特殊的RNN(Recurrent N原创 2020-12-30 18:07:31 · 1371 阅读 · 1 评论 -
卷积神经网络实现纹理合成(literature:Texture Synthesis Using Convolutional Neural Networks)
C:\Users\lenovo\Jupyter Notbook\Texture-Synthesis-Using-Convolutional-Neural-Networks-master\tensorflow_vgg\vgg16.npynpy file loadedbuild model startedbuild model finished: 0sEpoch: 100/10000 Loss: 5529756400000000.0Epoch: 200/10000 Loss: 17222650原创 2020-12-07 18:45:29 · 516 阅读 · 0 评论