AutoDL解决git@github.com: Permission denied (publickey).fatal: Could not read from remote repository.

提示的错误:Cloning into 'librecframework'... Warning: Permanently added 'github.com,20.205.243.166' (ECDSA) to the list of known hosts. git@github.com: Permission denied (publickey). fatal: Could not read from remote repository.Please make sure you have the correct access rights and the repository exists.

两个原因:

1、私人仓库

2、通过SSH克隆时,GitHub没有找到匹配的公钥,因此拒绝了访问

解决方法:

一、在AutoDL服务器上,输入:

ssh-keygen

如图所示: 

 

 输入之后,会叫你输入密钥名字和相应的密码,这里我们直接不填,回车就好了。

可以看到生成密钥的地方在:/root/.ssh/id_rsa.pub.

 然后进入root,再进入.ssh(.ssh为隐藏文件,直接cd .ssh即可)

然后输入:

cat id_rsa.pub

 

二、将生成的密钥,添加到GitHub 

登录GitHub,点击自己的头像

 

 

然后再去输入刚开始的命令,就不会出错了。

 

 

AutoDL和LLaMA都是用于自动化机器学习模型选择的工具,它们可以帮助你在不知道具体模型效果的情况下,通过预训练模型库自动找到最适合任务的模型。这里以LLaMA为例为你提供Windows环境下的基本使用步骤: 1. **安装环境**: - 首先,确保你的系统上已经安装了Python以及必要的包管理器pip。如果还没有,你可以访问Python官方网站下载并安装。 - 安装LLaMA: 打开命令行(如CMD或PowerShell),输入`pip install lamafactory`,这将安装LLaMA Factory库。 2. **获取预训练模型**: - 运行 `lamafactory models list` 命令查看可用的预训练模型,比如`llama3`。选择适合你的任务的模型,然后复制其ID。 3. **下载模型**: - 使用 `lamafactory download <model_id>`命令下载选定的模型,例如 `lamafactory download llama3`。这将从LLaMA服务器下载并保存到本地。 4. **加载模型**: - 导入所需的模块,如`lama_factory.models`,然后使用 `load_model('path/to/downloaded/model')`加载所选的模型。确保替换路径为实际下载的模型位置。 5. **准备数据**: - 根据你的任务需求,准备好输入数据。LLaMA通常需要文本序列作为输入,确保数据格式符合模型的期望。 6. **模型预测**: - 调用模型的 `generate()` 或者相关的预测方法,传入你的文本数据。例如: ```python generated_text = model.generate(text="your_input_prompt", max_length=100) ``` 7. **评估和调整**: - 分析生成的文本质量,可能的话对模型、超参数或预处理方式进行微调,直到达到满意的结果。 8. **保存结果**: - 将生成的文本或者其他有价值的信息保存下来,供后续分析或使用。 注意:LLaMA和AutoDL的具体步骤可能会因版本更新而有所变化,建议查阅最新的文档或官方GitHub仓库了解最新指南。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值