使用Isodata算法对鸢尾花数据集进行分类

设定初始参数如下:

% 设置ISODATA算法的参数
K = 3;  % 初始类别数
N = 100; % 最大迭代次数
T = 0.05; % 每个类别的样本数阈值
S = 0.75; % 类别方差阈值
C = 0.8; % 方差合并因子
F = 2; % 方差分裂因子

在聚类数目不发生变化时,认为迭代结束。
结果如图所示:
在这里插入图片描述
在这里插入图片描述
可以看到,不考虑原有标注的情况下,isodata算法通过不断迭代,有更好的聚类效果。
具体代码见链接:https://download.csdn.net/download/weixin_46538207/87659685

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值