自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 天池学习赛——金融风控-贷款违约预测(05)模型融合

import pandas as pdimport numpy as npimport warningsimport oswarnings.filterwarnings('ignore')# import pandas as pdimport seaborn as snsimport matplotlib.pyplot as plt"""sns 相关设置@return:"""# 声明使用 Seaborn 样式sns.set()# 有五种seaborn的绘图风格,它们分别是:da

2020-09-27 21:17:52 515

原创 天池学习赛——金融风控-贷款违约预测(04)建模与调参

模型对比逻辑回归优点训练速度较快,分类的时候,计算量仅仅只和特征的数目相关;简单易理解,模型的可解释性非常好,从特征的权重可以看到不同的特征对最后结果的影响;适合二分类问题,不需要缩放输入特征;内存资源占用小,只需要存储各个维度的特征值;缺点逻辑回归需要预先处理缺失值和异常值【可参考task3特征工程】;不能用Logistic回归去解决非线性问题,因为Logistic的决策面是线性的;对多重共线性数据较为敏感,且很难处理数据不平衡的问题;准确率并不是很高,因为形式非常简单,很难去拟合数

2020-09-24 20:47:10 653

原创 天池学习赛——金融风控-贷款违约预测(03)特征工程

听过这么一句话,特征工程决定了模型的上限,而算法参数调优只是无限逼近这个上限。接下来,我们将对数据进行特征工程,以便提高模型的精度。类别特征处理cate_features = ['grade', 'subGrade', 'employmentTitle', 'homeOwnership', 'verificationStatus', 'purpose', 'postCode', 'regionCode', 'applicationType', 'initialListStatus', 'titl

2020-09-21 23:00:16 374

原创 天池学习赛——金融风控-贷款违约预测(02)

对数据进行探索性数据分析,理解变量的数据分布特点,有助于我们更好的了解数据,便于对数据进行预处理以及特征工程,构建更精确的模型。接下来对贷款违约预测数据进行EDA,探索其数据花园的秘密(滑稽)。导入库import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as snsimport pandas_profilingimport warningswarnings.filterwarni

2020-09-18 20:10:44 405

原创 天池学习赛——金融风控-贷款违约预测(01)

天池学习赛——金融风控-贷款违约预测(01)本次天池学习赛的主题是关于金融风控领域,比赛主要任务为预测用户贷款是否违约,数据集来自某信贷平台的贷款记录,总数据量超过120w,包含47列变量信息,其中15列为匿名变量。变量名如下所示。变量名称:FieldDescriptionid为贷款清单分配的唯一信用证标识loanAmnt贷款金额term贷款期限(year)interestRate贷款利率installment分期付款金额grade贷款等级

2020-09-15 19:39:59 604

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除