天池学习赛——金融风控-贷款违约预测(04)建模与调参

模型对比

逻辑回归

优点

训练速度较快,分类的时候,计算量仅仅只和特征的数目相关;
简单易理解,模型的可解释性非常好,从特征的权重可以看到不同的特征对最后结果的影响;
适合二分类问题,不需要缩放输入特征;
内存资源占用小,只需要存储各个维度的特征值;
缺点

逻辑回归需要预先处理缺失值和异常值【可参考task3特征工程】;

不能用Logistic回归去解决非线性问题,因为Logistic的决策面是线性的;

对多重共线性数据较为敏感,且很难处理数据不平衡的问题;

准确率并不是很高,因为形式非常简单,很难去拟合数据的真实分布;

决策树模型

优点

简单直观,生成的决策树可以可视化展示
数据不需要预处理,不需要归一化,不需要处理缺失数据
既可以处理离散值,也可以处理连续值
缺点

决策树算法非常容易过拟合,导致泛化能力不强(可进行适当的剪枝)
采用的是贪心算法,容易得到局部最优解

集成模型集成方法(ensemble method)

通过组合多个学习器来完成学习任务,通过集成方法,可以将多个弱学习器组合成一个强分类器,因此集成学习的泛化能力一般比单一分类器要好。

集成方法主要包括Bagging和Boosting,Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个更加强大的分类。两种方法都是把若干个分类器整合为一个分类器的方法,只是整合的方式不一样,最终得到不一样的效果。常见的基于Baggin思想的集成模型有:随机森林、基于Boosting思想的集成模型有:Adaboost、GBDT、XgBoost、LightGBM等。

Baggin和Boosting的区别总结如下:

样本选择上: Bagging方法的训练集是从原始集中有放回的选取,所以从原始集中选出的各轮训练集之间是独立的;而Boosting方法需要每一轮的训练集不变,只是训练集中每个样本在分类器中的权重发生变化。而权值是根据上一轮的分类结果进行调整
样例权重上: Bagging方法使用均匀取样,所以每个样本的权重相等;而Boosting方法根据错误率不断调整样本的权值,错误率越大则权重越大
预测函数上: Bagging方法中所有预测函数的权重相等;而Boosting方法中每个弱分类器都有相应的权重,对于分类误差小的分类器会有更大的权重
并行计算上: Bagging方法中各个预测函数可以并行生成;而Boosting方法各个预测函数只能顺序生成,因为后一个模型参数需要前一轮模型的结果。

建模

from sklearn.model_selection import KFold
# 分离数据集,方便进行交叉验证
X_train = data.loc[data['sample']=='train', :].drop(['id','issueDate','isDefault', 'sample'], axis=1)
X_test = data.loc[data['sample']=='test', :].drop(['id','issueDate','isDefault', 'sample'], axis=1)
y_train = data.loc[data['sample']=='train', 'isDefault']

# 5折交叉验证
folds = 5
seed = 2020
kf = KFold(n_splits=folds, shuffle=True, random_state=seed)
"""对训练集数据进行划分,分成训练集和验证集,并进行相应的操作"""
from sklearn.model_selection import train_test_split
import lightgbm as lgb
# 数据集划分
X_train_split, X_val, y_train_split, y_val = train_test_split(X_train, y_train, test_size=0.2)
train_matrix = lgb.Dataset(X_train_split, label=y_train_split)
valid_matrix = lgb.Dataset(X_val, label=y_val)

params = {
            'boosting_type': 'gbdt',
            'objective': 'binary',
            'learning_rate': 0.1,
            'metric': 'auc',
            'min_child_weight': 1e-3,
            'num_leaves': 31,
            'max_depth': -1,
            'reg_lambda': 0,
            'reg_alpha': 0,
            'feature_fraction': 1,
            'bagging_fraction': 1,
            'bagging_freq': 0,
            'seed': 2020,
            'nthread': 8,
            'silent': True,
            'verbose': -1,
}

"""使用训练集数据进行模型训练"""
model = lgb.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=20000, verbose_eval=1000, early_stopping_rounds=200)

对验证集进行预测

from sklearn import metrics
from sklearn.metrics import roc_auc_score

"""预测并计算roc的相关指标"""
val_pre_lgb = model.predict(X_val, num_iteration=model.best_iteration)
fpr, tpr, threshold = metrics.roc_curve(y_val, val_pre_lgb)
roc_auc = metrics.auc(fpr, tpr)
print('未调参前lightgbm单模型在验证集上的AUC:{}'.format(roc_auc))
"""画出roc曲线图"""
plt.figure(figsize=(8, 8))
plt.title('Validation ROC')
plt.plot(fpr, tpr, 'b', label = 'Val AUC = %0.4f' % roc_auc)
plt.ylim(0,1)
plt.xlim(0,1)
plt.legend(loc='best')
plt.title('ROC')
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
# 画出对角线
plt.plot([0,1],[0,1],'r--')
plt.show()
import lightgbm as lgb
"""使用lightgbm 5折交叉验证进行建模预测"""
cv_scores = []
for i, (train_index, valid_index) in enumerate(kf.split(X_train, y_train)):
    print('************************************ {} ************************************'.format(str(i+1)))
    X_train_split, y_train_split, X_val, y_val = X_train.iloc[train_index], y_train[train_index], X_train.iloc[valid_index], y_train[valid_index]
    
    train_matrix = lgb.Dataset(X_train_split, label=y_train_split)
    valid_matrix = lgb.Dataset(X_val, label=y_val)

    params = {
                'boosting_type': 'gbdt',
                'objective': 'binary',
                'learning_rate': 0.1,
                'metric': 'auc',
        
                'min_child_weight': 1e-3,
                'num_leaves': 31,
                'max_depth': -1,
                'reg_lambda': 0,
                'reg_alpha': 0,
                'feature_fraction': 1,
                'bagging_fraction': 1,
                'bagging_freq': 0,
                'seed': 2020,
                'nthread': 8,
                'silent': True,
                'verbose': -1,
    }
    
    model = lgb.train(params, train_set=train_matrix, num_boost_round=20000, valid_sets=valid_matrix, verbose_eval=1000, early_stopping_rounds=200)
    val_pred = model.predict(X_val, num_iteration=model.best_iteration)
    
    cv_scores.append(roc_auc_score(y_val, val_pred))
    print(cv_scores)

print("lgb_scotrainre_list:{}".format(cv_scores))
print("lgb_score_mean:{}".format(np.mean(cv_scores)))
print("lgb_score_std:{}".format(np.std(cv_scores)))

贝叶斯调参

贝叶斯调参的主要思想是:给定优化的目标函数(广义的函数,只需指定输入和输出即可,无需知道内部结构以及数学性质),通过不断地添加样本点来更新目标函数的后验分布(高斯过程,直到后验分布基本贴合于真实分布)。简单的说,就是考虑了上一次参数的信息,从而更好的调整当前的参数。

贝叶斯调参的步骤如下:
定义优化函数(rf_cv)
建立模型
定义待优化的参数
得到优化结果,并返回要优化的分数指标

from sklearn.model_selection import cross_val_score

"""定义优化函数"""
def rf_cv_lgb(num_leaves, max_depth, bagging_fraction, feature_fraction, bagging_freq, min_data_in_leaf, 
              min_child_weight, min_split_gain, reg_lambda, reg_alpha):
    # 建立模型
    model_lgb = lgb.LGBMClassifier(boosting_type='gbdt', bjective='binary', metric='auc',
                                   learning_rate=0.1, n_estimators=5000,
                                   num_leaves=int(num_leaves), max_depth=int(max_depth), 
                                   bagging_fraction=round(bagging_fraction, 2), feature_fraction=round(feature_fraction, 2),
                                   bagging_freq=int(bagging_freq), min_data_in_leaf=int(min_data_in_leaf),
                                   min_child_weight=min_child_weight, min_split_gain=min_split_gain,
                                   reg_lambda=reg_lambda, reg_alpha=reg_alpha,
                                   n_jobs= 8
                                  )
    
    val = cross_val_score(model_lgb, X_train_split, y_train_split, cv=5, scoring='roc_auc').mean()
    
    return val
from bayes_opt import BayesianOptimization
"""定义优化参数"""
bayes_lgb = BayesianOptimization(
    rf_cv_lgb, 
    {
        'num_leaves':(10, 200),
        'max_depth':(3, 20),
        'bagging_fraction':(0.5, 1.0),
        'feature_fraction':(0.5, 1.0),
        'bagging_freq':(0, 100),
        'min_data_in_leaf':(10,100),
        'min_child_weight':(0, 10),
        'min_split_gain':(0.0, 1.0),
        'reg_alpha':(0.0, 10),
        'reg_lambda':(0.0, 10),
    }
)

"""开始优化"""
bayes_lgb.maximize(n_iter=10)
"""显示优化结果"""
bayes_lgb.max
"""调整一个较小的学习率,并通过cv函数确定当前最优的迭代次数"""
base_params_lgb = {
                    'boosting_type': 'gbdt',
                    'objective': 'binary',
                    'metric': 'auc',
                    'learning_rate': 0.01,
                    'num_leaves': 14,
                    'max_depth': 19,
                    'min_data_in_leaf': 37,
                    'min_child_weight':1.6,
                    'bagging_fraction': 0.98,
                    'feature_fraction': 0.69,
                    'bagging_freq': 96,
                    'reg_lambda': 9,
                    'reg_alpha': 7,
                    'min_split_gain': 0.4,
                    'nthread': 8,
                    'seed': 2020,
                    'silent': True,
                    'verbose': -1,
}

cv_result_lgb = lgb.cv(
    train_set=train_matrix,
    early_stopping_rounds=1000, 
    num_boost_round=20000,
    nfold=5,
    stratified=True,
    shuffle=True,
    params=base_params_lgb,
    metrics='auc',
    seed=0
)

print('迭代次数{}'.format(len(cv_result_lgb['auc-mean'])))
print('最终模型的AUC为{}'.format(max(cv_result_lgb['auc-mean'])))
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值