2021杭电多校第五场

VC Is All You Need

签到题。比如在一个一维空间,有3个点,有两种颜色,你可以画一条线就可以让该线的两边都是同色。现在给你n个点,k - 1维的空间,也就相当于只能画k-1条线,能不能实现上述的分隔颜色。考虑先一个一个点地 分,最后如果剩下3个点,肯定就不能成功,所以当n > k + 1时,不存在。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int main()
{
    int T;
    cin >> T;
    while (T--)
    {
        ll n, k;
        cin >> n >> k;
        if (n > k + 1)
        {
            cout << "No\n";
        }
        else {
            cout << "Yes\n";
        }
    }
}

Cute Tree

直接根据题意记忆化搜索,跟上次杭电的题几乎是一样的,每进去依次buildtree函数,点数加一,最后返回的是总的点数。

#include<bits/stdc++.h>

using namespace std;

const int N = 2e5 + 10;

int ans = 0;
int d[N];

int dfs(int n)
{
    if(n == 1) return (d[n] = 1);
    if(n == 2) return (d[n] = 3);
    if(n == 3) return (d[n] = 4);
    if(d[n]) return d[n];
    int mid;
    if(n % 3 == 0) mid = n / 3;
    else mid = n / 3 + 1;
    int mid2 = (n + mid) / 2 - mid;
    int mid3 = n - mid2 - mid;
    return d[n] = dfs(mid) + dfs(mid2) + dfs(mid3) + 1;
}

int main()
{
    int t;
    cin >> t;
    while(t -- )
    {
        int n;
        scanf("%d",&n);
        for(int i = 1;i <= n;i ++ ) d[i] = 0;
        int t = n;
        for(int i = 1;i <= n;i ++ )
        {
            int x;
            scanf("%d",&x);
        }
        dfs(n);
        cout << d[t] << endl;
    }
    return 0;
}

Banzhuan

这题其实也简单,比赛的时候也推出来了的,但是一直wa,赛后看题解也跟我们的思路是一样的,不过测了一下数据,的确不对,最后是因为取模的问题,吐了,几次都是死在取模的路上。。。最大收益的话就是每次从顶部放下,计算就行了。最小的话,先把底层填满,再沿着右上方的对角线依次填高,这样既可以保证从上方看填满了,从左方和右方也是填满的。推公式的时候注意需要用到3次方求和的公式,遇到几次了,背一下。

#include<bits/stdc++.h>

using namespace std;

#define int long long

const int mod = 1e9 + 7;
int qmi(int a, int b) {
        int res = 1;
        while (b) {
            if (b & 1)res = (res * a) % mod;
            b >>= 1;
            a = (a * a) % mod;
        }
        return res;
    }
void solve() {
        int n; cin >> n;
        n = n % mod;
        int n1 = (n * (n + 1) % mod * ((2 * n % mod + 1) % mod)) % mod * qmi(6, mod - 2) % mod;
        int n2 = n * (n + 1) % mod * qmi(2, mod - 2) % mod;
        int n3 = n * n % mod;
        int ma = n1 * n2 % mod * n3 % mod;
        int n4 = (n - 1 + mod) % mod * (2 + n) % mod * qmi(2, mod - 2) % mod;
        int n5 = (n * (n + 1) % mod * ((2 * n % mod + 1) % mod) % mod * qmi(6, mod - 2) % mod - 1 + mod) % mod;
        int n6 = (n - 1 + mod) % mod * (2 + n) % mod * qmi(2, mod - 2) % mod;
        int n7 = n1 * n2 % mod;
        int mi = n7 + (n4 + n5) % mod * n6 % mod;
        cout << mi % mod << endl << ma % mod << endl;
}
signed main() {
	ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
	int T;
	cin >> T;
	while (T--)solve();
}

Array

这题树状数组或者分块,虽然分块暂时没看懂,看了看网上的题解,说线段树会超时,而且据说还是原题。。。这里直接给上洛谷原题的题解,https://www.luogu.com.cn/problem/solution/P4062
用树状数组维护三阶前缀和,推出公式
在这里插入图片描述

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int INF = 0x3f3f3f3f;
const LL mod = 1e9 + 7;
const int N = 1000005;
int ans[N];
LL c1[N * 4], c2[N * 4], c3[N * 4];
LL sum(int x) {
    LL res = 0;
    for (int i = x; i > 0; i -= i & -i) {
        res += c1[i] * (x + 2) * (x + 1) - c2[i] * (2 * x + 3) + c3[i];
    }
    return res / 2;
}
void add(int x, LL d, int n) {
    for (int i = x; i <= n; i += i & -i) {
        c1[i] += d;
        c2[i] += d * x;
        c3[i] += d * x * x;
    }
}
int a[N];
vector<int> b[N];
int main() {
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int n;
        scanf("%d", &n);
        for (int i = 1; i <= n; i++) 
        {
            scanf("%d", &a[i]);
            b[a[i]].push_back(i);
        }
        LL res = 0;
        for (int i = 1; i <=n; i++)
        {
            if(ans[a[i]]==1) continue;
            b[a[i]].push_back(n + 1);
            int last = 0;
            for (int j = 0; j < b[a[i]].size(); j++) 
            {
                int y = 2 * j - last + N, x = 2 * j - (b[a[i]][j] - 1) + N;
                res += sum(y - 1) - (x >= 3 ? sum(x - 2) : 0);
                add(x, 1, 2 * N );
                add(y + 1, -1, 2 * N);
                last = b[a[i]][j];
            }
            last = 0;
            for (int j = 0; j < b[a[i]].size(); j++) {
                int y = 2 * j - last + N, x = 2 * j - (b[a[i]][j] - 1) + N;
                add(x, -1, 2 * N);
                add(y + 1, 1, 2 *N);
                last = b[a[i]][j];
            }
            ans[a[i]]=1;
        }
        printf("%lld\n", res);
        for(int i=1;i<=n;i++)
        {
            b[a[i]].clear();
            ans[a[i]]=0;
        }
    }
    //system("pause");
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值