绝区零 双闪 双闪-三轴 工具

绝区零 双闪 双闪-三轴 工具

0. 演示视频

绝区零:≈100%的极致双闪和双闪-三轴

绝区零:手残党也能打双闪-三轴

1. 基本信息

2. 声明

  • !!! 使用 Python 模拟键鼠宏-怕封号, 请勿使用 !!!
  • !!! 使用 Python 模拟键鼠宏-怕封号, 请勿使用 !!!
  • !!! 使用 Python 模拟键鼠宏-怕封号, 请勿使用 !!!
  • !!! 若封号,已经警示,与本人无关 !!!
  • !!! 若封号,已经警示,与本人无关 !!!
  • !!! 若封号,已经警示,与本人无关 !!!

3. 介绍

  • 该工具为 绝区零 双闪-三轴 键鼠宏 工具

  • 绝区零大佬们新的研发成果: 理论存在, 实践可行但有难度的 双闪 甚至 双闪-三轴

  • 双闪 (触发两次极限闪避攻击): -> A -> 切人 -> -> A

  • 双闪-三轴 (三个角色在场输出): -> A -> 切人 -> -> A -> 切人 -> 攻击

  • 人操作有难度, 我操作只有不到30%的概率触发 双闪, 但咱是破敲代码的, so ~~

  • 通过 python 写个工具, 模拟 玩游戏时 的 键鼠 操作, 可以极大提高 触发 双闪 的概率, 甚至可以打出 双闪-三轴, 只需在需要闪避时按个 按键 就模拟, 进而触发。

  • 该工具 切人 使用的是 c 切, 而不是 空格, 所以 没有点数下也可以触发

  • 该工具 是 手动触发 不是自动

  • 该工具 触发 有概率 不是100%

4. 使用

  • 先解压 Tools-ZZZ-DoubleFlash.zip
  • 然后 双击 双击我.bat
  • (如果只运行 main.exe, 无法监听和模拟键鼠操作)
  • (所以, 使用 批处理文件 默认请求管理员权限)
  • 输入 y 同意免责 使用
  • 在怪物闪光时 按下 v 模拟键鼠 双闪
  • 在怪物闪光时 按下 b 模拟键鼠 双闪-三轴
  • 按下 o 退出

4. 效果图

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### WLS技术实现与解决方案 #### 背景概述 加权非线性最小二乘法(Weighted Nonlinear Least Squares, WLS)是一种用于优化参数估计的技术,在多传感器融合领域具有广泛应用。其核心在于通过对不同测量值赋予不同的权重来提高系统的鲁棒性和精度[^1]。 在具体应用中,WLS可以结合传感器的数据处理需求,特别是在涉及位置、姿态或其他物理量的精确计算时表现出显著优势。例如,智慧井盖监测系统中提到的报警功能可能依赖于类似的算法框架来进行数据分析和异常检测[^2][^3]。 #### 技术原理分析 为了理解如何利用WLS方法解决相关问题,可以从以下几个方面展开: 1. **模型构建** 假设存在一组观测数据 \( y_i \),这些数据由某种函数关系描述为: \[ y_i = f(x; p) + e_i, \] 其中 \( x \) 是输入变量,\( p \) 表示待估参数向量,而 \( e_i \) 则代表随机误差项。当考虑传感器输出时,该方程可扩展至维空间坐标系下的表达形式。 2. **目标函数定义** 定义残差平方和作为衡量拟合优劣的标准,则有: \[ S(p) = \sum_{i=1}^{N} w_i (y_i - f(x_i;p))^2. \] 这里引入了权重系数 \( w_i \geq 0 \),允许根据不同信源质量调整贡献比例。 3. **迭代求解过程** 使用梯度下降或者高斯牛顿法等数值技巧逐步逼近最优解。每次更新步长需满足收敛条件的同时兼顾效率考量。 #### 实际案例探讨——基于NB-IoT的智慧井盖监控体系 针对智慧城市背景下提出的“城市园区NB-IoT智慧井盖解决方案”,其中提及到运用光感以及传感机制捕捉环境变化信号并上传云端服务器做进一步解析操作。此场景非常适合采纳前述所讨论过的WLS策略完成最终定位判定任务。 以下是简化版伪代码展示整个流程逻辑: ```python import numpy as np def weighted_nonlinear_least_squares(measurements, initial_guess): """ Perform Weighted Nonlinear Least Squares estimation. Parameters: measurements : list of tuples containing observed data points and their associated uncertainties. initial_guess: starting point for iterative optimization procedure. Returns: refined_parameters: estimated parameter set after convergence achieved. """ # Initialize variables & constants here... while not converged: jacobian_matrix = compute_jacobian(current_params) residual_vector = calculate_residuals(data_points, current_model) update_direction = solve_linear_system(jacobian_matrix.T @ covariance_inverse @ jacobian_matrix, -(jacobian_matrix.T @ covariance_inverse @ residual_vector)) new_estimate = old_estimate + step_size * update_direction check_convergence(new_estimate, tolerance_level) return final_result if __name__ == "__main__": sample_data = [(np.array([ax, ay, az]), sigma_xyz)] # Example input format from tri-axis accelerometer readings... guess_p0 = [initial_x_offset, initial_y_rotation_angle] result = weighted_nonlinear_least_squares(sample_data, guess_p0) print(f"Optimized parameters are {result}.") ``` 上述片段展示了基本架构设计思路,实际工程落地还需综合评估硬件性能指标等因素做出适当修改适配特定业务诉求。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值