求逆元

众说周知,逆元是算法竞赛数论中逃不开的点,下面,便总结一下常用的求逆元的及几种方法,适用于不同情景。

  1. 扩欧(扩展欧几里得)
    扩欧为大家所熟知且应用及其广泛的一种方法。直接上代码。
void extend_gcd(int a,int b,int &x,int &y)			//扩展欧几里得
{
    if (b==0)
    {
        x = 1, y = 0;
        return;
    }
    extend_gcd(b, a % b, x, y);
    int tmp = x;
    x = y;
    y = tmp - (a / b) * y;
}
int mod_inverse(int a,int mod)					//求逆元
{
    int x, y;
    extend_gcd(a, mod, x, y);
    return (mod + x % mod) % mod;		//扩展欧几里得求出的数可能是负数,需处理成正数
}

我们知道扩展欧几里得方程有解当且仅当gcd(a,b)=1,即a,b互质。所以a与mod互质时才能用扩欧求逆元。
时间复杂度O(logn),适用于mod较大的情况。
2. 费马小定理
费马小定理一般用于p是质数的情况。
2 p − 1 ≡ 1 ( m o d p ) p 为 质 数 2^{p-1} \equiv 1\pmod{p} p为质数 2p11(modp)p
∴ a p − 2 ∗ a ≡ 1 ( m o d p ) \therefore a^{p-2}*a \equiv 1 \pmod{p} ap2a1(modp)

long long quick_Power(long long base, long long power,long long mod) {			//快速幂
    long long result = 1;
    while (power > 0) {
        if (power & 1) {//此处等价于if(power%2==1)
            result = result * base % mod;
        }
        power >>= 1;//此处等价于power=power/2
        base = (base * base) % mod;
    }
    return result;
}
long long getInv(long long a,long long mod)			
{
    return quick_Power(a,mod-2,mod);
}

时间复杂度O(log mod)
用于mod是素数的情况,速度快于扩欧。
3. 线性预处理求逆元
推导:
令p=k∗i+r,k=p/i,r=p%i
k∗i+r≡0(mod p)
两边同事乘上i−1∗r−1得到
k∗r−1+i−1≡0(mod p)
i−1≡−k∗r−1(mod p)
i−1≡−|p/i|∗(pmodi)−1(mod p)
所以递推公式为
A[i]=−(p/i)∗A[p%i]
在这里插入图片描述
书写出现格式错误,所以附上图片。

LL inv[mod+5];
void getInv(LL mod)
{
    inv[1]=1;
    for(int i=2;i<mod;i++)
        inv[i]=(mod-mod/i)*inv[mod%i]%mod;
}
LL inv(LL i)
{
    if(i==1)return 1;
    return (mod-mod/i)*inv(mod%i)%mod;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值