插入排序 时间复杂度为O(n^2),是一个稳定的排序算法
其基本流程如下:
比较当前数跟它后一个数的大小,如果后一个数更小,则将其移动到第一个比他小的数的后面,或者是最开头(升序)
- 初始操作数: 1, -1, 2, 5, -4, 0, -2, -3, 3, 4 (升序排列)
一开始,当前操作数为 1,比较 1 和 -1 的大小发现,后一个数更小,则将 -1 移动到之前第一个比他小的数后面或者最开头,这里显然移动到开头,则:- 第一轮移动:
1, 1, 2, 5, -4, 0, -2, -3, 3, 4 (将 1 往后移动一格)
-1, 1, 2, 5, -4, 0, -2, -3, 3, 4 (移动到 1 已经是最开头了,因此直接把 -1 赋值过去)
然后接着比较 1 和 2 ,2 和 5发现不满足后面的数更小,一直到比较 5 和 -4,则
- 第二轮移动:
-1, 1, 2, 5, 5, 0, -2, -3, 3, 4 ( -4 < 5,将 5 往后移动一格)
-1, 1, 2, 2, 5, 0, -2, -3, 3, 4 ( -4 < 2,将 2 往后移动一格)
-1, 1, 1, 2, 5, 0, -2, -3, 3, 4 ( -4 < 1,将 1 往后移动一格)
-1, -1, 1, 2, 5, 0, -2, -3, 3, 4 ( -4 < -1,将 -1 往后移动一格)
-4, -1, 1, 2, 5, 0, -2, -3, 3, 4 (到头了,将 -4 赋值过去)
后面的移动都是类似的,可以看出,这是一个非交换算法,并且也是稳定的,即对于相同数据,排序后的顺序不会改变原本的相对顺序
升序插入排序算法如下:
void insertUpSort(int nums[], int numsSize) {
int i, j, tmp;
for(i = 0; i < numsSize-1; ++i) {
if(nums[i] > nums[i+1]) {
tmp = nums[i+1];
for(j = i; j>=0 && nums[j]>tmp; --j) {
nums[j+1] = nums[j];
}
nums[j+1] = tmp;
}
}
}
对于降序来说只需要比较相邻两个数,并且将更大的数往前移动即可
void insertDownSort(int nums[], int numsSize) {
int i, j, tmp;
for(i = 0; i < numsSize-1; ++i) {
if(nums[i] < nums[i+1]) {
tmp = nums[i+1];
for(j = i; j>=0 && nums[j]<tmp; --j) {
nums[j+1] = nums[j];
}
nums[j+1] = tmp;
}
}
}
源代码
#include <stdio.h>
void insertUpSort(int nums[], int numsSize) {
int i, j, tmp;
for(i = 0; i < numsSize-1; ++i) {
if(nums[i] > nums[i+1]) {
tmp = nums[i+1];
for(j = i; j>=0 && nums[j]>tmp; --j) {
nums[j+1] = nums[j];
}
nums[j+1] = tmp;
}
}
}
void insertDownSort(int nums[], int numsSize) {
int i, j, tmp;
for(i = 0; i < numsSize-1; ++i) {
if(nums[i] < nums[i+1]) {
tmp = nums[i+1];
for(j = i; j>=0 && nums[j]<tmp; --j) {
nums[j+1] = nums[j];
}
nums[j+1] = tmp;
}
}
}
int main() {
int arr1[] = {1, -1, 2, 5, -4, 0, -2, -3, 3, 4};
int len1 = sizeof(arr1) / sizeof(arr1[0]);
insertUpSort(arr1, len1);
int arr2[] = {1, -1, 2, 5, -4, 0, -2, -3, 3, 4};
int len2 = sizeof(arr2) / sizeof(arr2[0]);
insertDownSort(arr2, len2);
printf("UP:\t");
for(int i = 0; i < len1; ++i) printf("%d ", arr1[i]);
printf("\nDOWN:\t");
for(int i = 0; i < len2; ++i) printf("%d ", arr2[i]);
return 0;
}