关于1^∞型极限的一点想法

结论

1.幂指函数的底数不能等价替换,指数的因式可以等价替换
2.关于 1 ∞ 1^{\infty} 1型极限的常用结论:
若 lim ⁡ α ( x ) = 0 , lim ⁡ β ( x ) = ∞ , 且 lim ⁡ α ( x ) β ( x ) = A , 则 : 若\lim \alpha(x)=0,\lim \beta(x)=\infty,且\lim \alpha(x)\beta(x)=A,则: limα(x)=0,limβ(x)=,limα(x)β(x)=A,:
lim ⁡ [ 1 + α ( x ) ] β ( x ) = e A \lim[1+\alpha(x)]^{\beta(x)}=e^A lim[1+α(x)]β(x)=eA
下面看一些典型错误以及正确解法:

1.

lim ⁡ x → 0 [ x ln ⁡ ( 1 + x ) ] 1 2 x \lim\limits_{x\to 0}\left [ \frac{x}{\ln (1+x)} \right ] ^{\frac{1}{2x}} x0lim[ln(1+x)x]2x1
典型的错误解法:

解 : 解:
原 式 = lim ⁡ x → 0 [ ln ⁡ ( 1 + x ) ln ⁡ ( 1 + x ) − ln ⁡ ( 1 + x ) ln ⁡ ( 1 + x ) + x ln ⁡ ( 1 + x ) ] 1 2 x = lim ⁡ x → 0 [ 1 + x − ln ⁡ ( 1 + x ) ln ⁡ ( 1 + x ) ] 1 2 x = lim ⁡ x → 0 [ 1 + 1 2 x 2 x ] 1 2 x ( 等 价 无 穷 小 ) = lim ⁡ x → 0 [ 1 + 1 2 x ] 1 2 x 记 : α ( x ) = 1 2 x 记 : β ( x ) = 1 2 x 由 于 : lim ⁡ α ( x ) = 0 , lim ⁡ β ( x ) = ∞ , 且 lim ⁡ α ( x ) β ( x ) = 1 4 故 原 式 = e 1 4 \begin{aligned} 原式&=\lim\limits_{x\to 0}\left [ \frac{\ln(1+x)}{\ln(1+x)}-\frac{\ln(1+x)}{\ln(1+x)}+\frac{x}{\ln (1+x)} \right ] ^{\frac{1}{2x}}\\ &=\lim\limits_{x\to 0}\left [ 1+\frac{x-\ln(1+x)}{\ln (1+x)} \right ] ^{\frac{1}{2x}}\\ &=\lim\limits_{x\to 0}\left [1+\frac{\frac{1}{2}x^2}{x}\right]^{\frac{1}{2x}}(等价无穷小)\\ &=\lim\limits_{x\to 0}\left [1+\frac{1}{2}x\right ]^{\frac{1}{2x}}\\ &记:\alpha (x)=\frac{1}{2}x\\ &记:\beta(x)=\frac{1}{2x}\\ &由于:\lim \alpha(x)=0,\lim \beta(x)=\infty,且\lim \alpha(x)\beta(x)=\frac{1}{4}\\ &故原式=e^{\frac{1}{4}}\\ \end{aligned} =x0lim[ln(1+x)ln(1+x)ln(1+x)ln(1+x)+ln(1+x)x]2x1=x0lim[1+ln(1+x)xln(1+x)]2x1=x0lim[1+x21x2]2x1()=x0lim[1+21x]2x1α(x)=21xβ(x)=2x1limα(x)=0,limβ(x)=,limα(x)β(x)=41=e41
错误原因: 求极限只能对分式分子分母中的因式用等价量替换,这里幂指函数底数因式的替换,没有依据。 —浙江大学矿爷

正确的解法:

法一:那就别等价无穷小替换了,直接用 x − ln ⁡ ( 1 + x ) ln ⁡ ( 1 + x ) ⋅ 1 2 x \frac{x-\ln(1+x)}{\ln (1+x)}\cdot\frac{1}{2x} ln(1+x)xln(1+x)2x1结果也是 1 4 \frac{1}{4} 41。所以这道题属于碰巧了。
原 式 = lim ⁡ x → 0 [ ln ⁡ ( 1 + x ) ln ⁡ ( 1 + x ) − ln ⁡ ( 1 + x ) ln ⁡ ( 1 + x ) + x ln ⁡ ( 1 + x ) ] 1 2 x = lim ⁡ x → 0 [ 1 + x − ln ⁡ ( 1 + x ) ln ⁡ ( 1 + x ) ] 1 2 x 到 这 里 就 行 了 , 别 用 等 价 无 穷 小 替 换 了 。 记 : α ( x ) = x − ln ⁡ ( 1 + x ) ln ⁡ ( 1 + x ) 记 : β ( x ) = 1 2 x 由 于 : lim ⁡ α ( x ) = 0 , lim ⁡ β ( x ) = ∞ , 且 lim ⁡ α ( x ) β ( x ) = 1 4 故 原 式 = e 1 4 \begin{aligned} 原式&=\lim\limits_{x\to 0}\left [ \frac{\ln(1+x)}{\ln(1+x)}-\frac{\ln(1+x)}{\ln(1+x)}+\frac{x}{\ln (1+x)} \right ] ^{\frac{1}{2x}}\\ &=\lim\limits_{x\to 0}\left [ 1+\frac{x-\ln(1+x)}{\ln (1+x)} \right ] ^{\frac{1}{2x}}\\ &到这里就行了,别用等价无穷小替换了。\\ &记:\alpha (x)=\frac{x-\ln(1+x)}{\ln (1+x)}\\ &记:\beta(x)=\frac{1}{2x}\\ &由于:\lim \alpha(x)=0,\lim \beta(x)=\infty,且\lim \alpha(x)\beta(x)=\frac{1}{4}\\ &故原式=e^{\frac{1}{4}}\\ \end{aligned} =x0lim[ln(1+x)ln(1+x)ln(1+x)ln(1+x)+ln(1+x)x]2x1=x0lim[1+ln(1+x)xln(1+x)]2x1α(x)=ln(1+x)xln(1+x)β(x)=2x1limα(x)=0,limβ(x)=,limα(x)β(x)=41=e41
法二:凑第二个重要极限
解:
在这里插入图片描述
相似习题:
在这里插入图片描述

2.

lim ⁡ x → 0 + [ x ( e x − 1 ) cos ⁡ x ] 1 sin ⁡ x \lim\limits_{x\to 0^+}\left [ \frac{x}{(e^x-1)\cos\sqrt{x}} \right ] ^{\frac{1}{\sin x}} x0+lim[(ex1)cosx x]sinx1
典型的错误解法:
请添加图片描述请添加图片描述
正确的解法:

泰勒展开()目前还不会

3.

lim ⁡ n → + ∞ [ tan ⁡ ( π 2 + n 2 ) ] n \lim\limits_{n\to +\infty}\left[ \tan(\frac{\pi}{2}+\frac{n}{2})\right] ^{n} n+lim[tan(2π+2n)]n
典型的错误解法:
使用等价无穷小替换tan()里面的变量
正确的解法:
法一
请添加图片描述
法二
请添加图片描述

4.凑基本极限之后使用复合函数连续性

lim ⁡ x → 0 ( 1 + 2 x ) 3 sin ⁡ x \lim\limits_{x\to0}(1+2x)^{\frac{3}{\sin x}} x0lim(1+2x)sinx3
解: ( 1 + 2 x ) 3 sin ⁡ x = ( 1 + 2 x ) 1 2 x ⋅ x sin ⁡ x ⋅ 6 = e 6 ⋅ x sin ⁡ x ln ⁡ ( 1 + 2 x ) 1 2 x ( 用 e ln ⁡ ⋯ 换 的 ) (1+2x)^{\frac{3}{\sin x}}=(1+2x)^{\frac{1}{2x}\cdot\frac{x}{\sin x}\cdot6}=e^{6\cdot\frac{x}{\sin x}\ln(1+2x)^{\frac{1}{2x}}}(用e^{\ln \cdots}换的) (1+2x)sinx3=(1+2x)2x1sinxx6=e6sinxxln(1+2x)2x1(eln)已经凑出来两个基本极限了,然后用复合函数连续性定理以及极限运算法则,则有
lim ⁡ x → 0 ( 1 + 2 x ) 3 sin ⁡ x = e lim ⁡ x → 0 [ 6 ⋅ x sin ⁡ x ln ⁡ ( 1 + 2 x ) 1 2 x ] = e 6 \lim\limits_{x\to0}(1+2x)^{\frac{3}{\sin x}}=e^{\lim\limits_{x\to0}[6\cdot\frac{x}{\sin x}\ln(1+2x)^{\frac{1}{2x}}]}=e^6 x0lim(1+2x)sinx3=ex0lim[6sinxxln(1+2x)2x1]=e6

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值