1.
n
1
n
>
1
(
当
n
≥
1
)
n^{\frac{1}{n}}>1(当n\ge 1)
nn1>1(当n≥1)
证
明
:
设
n
1
n
=
a
,
则
:
证明:设n^{\frac{1}{n}}=a,则:
证明:设nn1=a,则:
ln
n
1
n
=
ln
a
ln
(
n
)
n
=
ln
a
当
n
≥
1
时
ln
(
n
)
n
≥
0
∴
ln
a
≥
0
∴
a
≥
1
\begin{aligned} &\ln n^{\frac{1}{n}}=\ln a\\ &\frac{\ln (n)}{n}=\ln a\\ &当n\ge 1时\\ &\frac{\ln (n)}{n}\ge0\\ &\therefore \ln a\ge0\\ &\therefore a\ge1\\ \end{aligned}
lnnn1=lnanln(n)=lna当n≥1时nln(n)≥0∴lna≥0∴a≥1
注
意
:
n
1
n
可
以
看
做
是
一
个
数
列
其
大
于
等
于
1
,
但
是
x
1
x
则
没
有
这
个
关
系
注意:n^{\frac{1}{n}}可以看做是一个数列其大于等于1,但是x^{\frac{1}{x}}则没有这个关系
注意:nn1可以看做是一个数列其大于等于1,但是xx1则没有这个关系
一些常用量的比较大小
最新推荐文章于 2025-05-24 17:54:21 发布