剑指 Offer 14- I. 剪绳子
给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m-1] 。请问 k[0]k[1]…*k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1
示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
提示:
2 <= n <= 58
解法一:动态规划
class Solution {
public int cuttingRope(int n) {
int[] dp = new int[n + 1];
dp[2] = 1;
for(int i = 3; i < n +1; i++){
for(int j = 2; j < i; j++){
dp[i] = Math.max(dp[i],Math.max(j * ( i - j),j * dp[i - j]));
}
}
return dp[n];
}
}
解法二: 解绳子 3是关键
class Solution {
public int cuttingRope(int n) {
if(n <= 3)
return n -1;
int a = n / 3,rem = n % 3;
if(rem == 1) return (int)Math.pow(3,a - 1) * 4;
if(rem == 2) return (int)Math.pow(3,a) * 2;
return (int)Math.pow(3,a);
}
}