【剑指 Offer 14- I. 剪绳子】(动态规划)

【解题思路】

        题目中绳子的长度n大于2,绳子至少可以剪一刀。当n = 2时,只能剪一刀,2 = 1 + 1,此时乘积为1 * 1 = 1;

        当n = 3时,3 = 1 + 1 + 1,此时1 * 1 * 1 = 1;3 = 1 + 2,此时1 * 2 = 2,最大为2;

        当n = 4时,4 = 1 + 1 + 1 + 1,此时 1 * 1 * 1 * 1 = 1; 4 = 1 + 2 + 1,此时1 * 2 * 1 = 2;4 = 2 + 2,此时2 * 2 = 4;4 = 1 + 3,此时1 * 3 = 3;最大为4。

       求长度为n的绳子,分为m段,每段乘积的最大值的问题,可以转换为在i点剪开,f(i) * f(n-i)的最大值的问题。 将原问题转换为规模较小的子问题,构造动态规划表达式为:f(n) = max{f(n), f(i) * f(n-i)}。

class Solution {
    public int cuttingRope(int n) {
        if(n == 2) return 1;
        if(n == 3) return 2;
        int[] f = new int[n+1];
        f[0] = 0;
        f[1] = 1;
        f[2] = 2;
        f[3] = 3;

        int tmp = 0;
        for(int i = 4; i <= n; i++)
        {
            for(int j = 1; j <= i/2; j++)
            {
                tmp = f[j] * f[i-j];
                if(tmp > f[i])
                {
                    f[i] = tmp;
                }
            }
        }

        return f[n];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值