- 博客(177)
- 资源 (4)
- 收藏
- 关注
原创 dataframe数据求年平均(含nan)
按年分组并计算平均值:使用resample方法按年分组,然后计算每列的年平均值。转换日期格式:将日期列转换为Pandas的datetime格式,方便后续操作。第一列是日期(格式为YYYYMMDD,例如19610101)。设置日期为索引:将日期列设置为数据框的索引。读取数据:确保数据框df已经正确加载。
2025-03-20 15:32:11
270
原创 Pycharm设置相同变量的背景颜色
在 PyCharm 中设置鼠标点击某个变量时,代码其他地方相同变量的背景颜色,可以通过调整颜色方案中的相关设置来实现。的设置应该保持一致,以确保颜色设置的正确性。这样,当你在代码中点击一个变量时,其他相同变量的背景颜色就会按照你的设置进行高亮显示。这两个设置分别控制着你当前光标所在的变量和其他相同变量的高亮显示。你可以通过点击颜色框来选择你想要的背景颜色。在设置或首选项窗口中,选择。应用更改,如果满意,点击。在右侧的详细设置中,找到。(在 macOS 上)。在左侧的菜单中,选择。
2024-10-10 16:46:35
701
原创 MaskedArray如何填补为nan
在NumPy中,MaskedArray 是一种特殊的数组,它允许你对数组中的某些元素进行掩码(mask),以便在进行计算时忽略这些元素。掩码数组常用于处理缺失值或无效数据。如果你想将MaskedArray中的掩码元素填补为nan(Not a Number),你可以使用filled方法。
2024-03-17 17:21:41
342
原创 pre_min[0:10, 2:3] = pre和pre_min[0:10, 2] = pre区别
这个切片表达式选择了pre_min数组中的第0到第9行(包括第0行但不包括第10行),以及第3列(在Python中,索引是从0开始的,所以2:3表示第3列)。例如,如果您尝试将一个形状为(10, 1)的数组赋值给pre_min[0:10, 2],或者将一个形状为(10,)的数组赋值给pre_min[0:10, 2:3],您会得到一个形状不匹配的错误。对于您提到的两个切片表达式,pre_min[0:10, 2:3] 和 pre_min[0:10, 2],它们有本质的区别,主要体现在所选的维度和形状上。
2024-03-16 21:14:53
312
原创 pandas 按相同站号重新整合出一个dataframe
这可以通过left_on和right_on参数来实现,这两个参数分别指定左侧DataFrame和右侧DataFrame中用作合并键的列名。在这个例子中,尽管df1中的ID_num列是整数类型,而df2中的ID_str列是字符串类型,但我们仍然可以通过left_on和right_on参数将它们作为合并键。如果合并后你想要保留原始的列名,可以使用left_index=False和right_index=False参数,并可能需要在合并后重命名列。
2024-02-07 11:08:17
294
原创 python geopandas白化/掩膜提取
注意:在运行这段代码之前,需要确保已经安装了所有必要的库,并且 test.txt 和 dishi.shp 文件存在于指定的路径下。此外,由于代码中使用了中文字符和路径,可能会遇到编码或路径问题,需要根据实际情况进行调整。以下代码主要是利用 Python 中的几个库(geopandas, pandas, scipy, numpy, matplotlib)来进行空间插值并绘制地图。
2024-01-19 17:29:10
323
原创 笔记:pycharm当有多个plt.show()时候,只显示第一个plt.show()
【代码】笔记:pycharm当有多个plt.show()时候,只显示第一个plt.show()
2023-11-25 22:45:30
1357
原创 osgeo shapefile安装
shapefile 要用conda install pyshp安装。osgeo 要用conda install gdal 安装。关于以下两个库的安装要注意。
2023-10-16 23:30:50
210
原创 Python 并行计算
在这个示例中,我们定义了一个模拟耗时操作的函数slow_function。然后,我们创建了一个包含数字的列表numbers。通过使用Parallel和delayed,我们并行地对列表中的每个数字执行了slow_function函数。最后,我们打印了结果。请注意,在使用Parallel时,你可以通过设置n_jobs参数来控制并行任务的数量。在上面的示例中,我们设置了n_jobs=-1,这意味着用最大资源进行并行计算。
2023-09-14 09:37:16
593
原创 并行计算出现 pickle.PicklingError
这个问题是由于多进程模块multiprocessing在Windows系统上运行时的限制所导致的。在Windows系统上,multiprocessing模块使用pickle来序列化和反序列化函数,但是,对于在__main__模块中定义的函数,pickle无法正确地序列化和反序列化。要解决这个问题,你可以将my_function定义移到单独的模块中,然后在主程序中导入该模块。这样,当在Windows系统上运行主程序时,就不会再遇到pickle.PicklingError问题。
2023-09-13 09:12:00
550
1
哥白尼数据中心的gosat数据使用手册C3S_D312b_Lot2.3.2.3-v1.0_PUGS-GHG_MAIN_v3.1.pdf
2020-05-19
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人