埃及分数[算法]

本文探讨了古埃及分数的表示方法,通过贪心算法将真分数转化为分子为1的分数之和。核心思想是寻找真分数中最大的埃及分数,公式表示为A/B > 1/(C+1),其中C是B除以A的整数部分,D是余数。通过减去最大埃及分数并简化剩余真分数,直至得到所需的埃及分数和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

埃及同中国一样,也是世界文明古国之一。古埃及人只用分子为1的分数,在表示一个真分数时,将其分解为若干个埃及分数之和,例如:7/8表示为1/2+1/3+1/24。设计程序把一个真分数表示为最少的埃及分数之和的形式
这涉及到了贪心的思想,即,每一项都是减去前一项后,留下分子是1的最大真分数就可以了,所以如何找到真分数包含的最大埃及分数,就是解决问题的关键了。
设真分数为A/B,B除以A的整数部分为C,余数为D,则有下式成立:
B=AC+D

B/A=C+D/A<C+1(因为D/A是小于1的,因此呢,C+D/A <C+1且,C+1是大于B/A的最小分数。
则讲分式倒置则有:
A/B>1/(C+1)
1/(C+1)即为真分数A/B包含的最大埃及分数。设E=C+1,由于
A/B-1/E=(AE-B)/(BE) (通分
则真分数减去最大埃及分数后,得到真分数(AE-B)/(BE),该真分数可能存在公因子,需要化简,可以将分子和分母同时除以最大公约数。
具体实现代码:

           #include<stdio.h>                  //使用库函数printf和scanf
            void EgyptFraction(int A,int B);    //函数声明,表示埃及分数
            int CommonFactor(int m,int n);      //函数声明,求最大公约数
                                                 //空行,以下是主函数

            
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是牛大春呀

老板糊涂啊

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值