用考研數學攻略考研用的電動力學_3.波動方程(最理想的電磁是光_系综理论上篇)

微观量子体系的运动方程

        在量子力学中,我们建立了描述微观量子体系的运动方程:Schrödinger 方程,其给出了体系微观态随时间演化的动力学描述,即

 
i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = H|\psi(t)\rangle
其中 |\psi(t)\rangle为体系在 t 时刻的微观态、 H 为体系的 Hamilton 。而体系的一个微观态可以由能量本征态 |v\rangle 的线性组合给出,能量本征态满足方程
H|\nu\rangle = E_\nu|\nu\rangle
        这里给出了本征态 | ν 对应的本征值 E ν . 根据本征态的正交归一和完备性,一个量子态可以表示为
|\psi\rangle = \sum_{\nu} | \nu \rangle \langle \nu | \psi \rangle
h\rightarrow 0 的情况下,描述体系的方程可以由经典的 Hamilton 正则方程给出,即
\dot{r} = \frac{\partial H}{\partial p}\\\dot{p} = -\frac{\partial H}{\partial r}
        这里 r p 分别为体系的正则坐标正则动量。但无论是经典的 Hamilton 方程还是量子的 Schrödinger 方程,其都给出了体系微观态的完全描述,但对于一个自由度为 10^{23} 量级的宏观体系,真正重要的宏观性质的个数却很少,因此建立一种能从众多自由度中提取出重要信息的方法是关键的。而统计力学就是这样的一种方法,其建立了一条从微观到宏观的道路,着手处理宏观系统的宏观可观测性质。这里我们所说的宏观可观测性质包括:粒子数 N ,内能 E ,体积 V ,压强 p ,温度 T ,熵 S ,化学势 µ 等。
        在本讲义(參考)中,我们主要处理的是热力学平衡态的性质,这里的平衡态指的是宏观性质确
定、不随时间演化的宏观状态。且我们主要处理的是单组分子的性质

系综理论

系综和遍历性假设

        当宏观系统处于热力学平衡态时,所有满足约束条件的可能微观态的集合称为系综 。系综的目的是为了研究宏观系统的宏观性质的一种数学处理手段,其为一种方法论,系综的选择不影响物理实在。一个力学量在系综的框架下给出的统计平均称为系综平均,其给出宏观物理量的性质(值得注意的一点:在概率论中,基本公理基于三元组 (\Omega , F, P ),即样本空间 \Omega\sigma代数 F以及概率 P,而这里的样本空间 \Omega和系综有着类似的意义,其都给基于代数规则给出概率)。在量子力学中,微观态的集合为满足约束条件下的 Hilbert 空间中的可能态; 在经典力学下即为相空间中由 ( p , r ) 定义的轨迹。
        
        为了给出系统的宏观性质,除了基于系综的基本概念以及假设,我们还需要用到宏观系
统的热力学性质。根据热力学基本定律,我们有
dE = -pdV + TdS + \mu dN
对于表面的情况,还需要引入表面张力的贡献。根据 Euler 齐函数定理,我们得到
E =-pV+ T S + \mu N
通过 Legendre 变换,我们可以定义其他的热力学函数并给出微分关系,他们包括
H \equiv E + pV
Helmholtz 自由能
A\equiv E-TS
以及 Gibbs 自由能
G \equiv E + pV - TS
        引入统计力学第一个基本假设:遍历性假设
        其表述如下:在宏观的测量时间内,宏观系统已经以一定概率遍历所有允许的微观状态,所测量的宏观物理量是历经微观态的统计平均。
遍历性假设给出的重要信息为:在宏观测量时间下,时间平均等于系综平均,即对于某个物理量 G
\lim_{​{T\rightarrow\infty}} \frac{1}{T}\int_0^T Gdt = \int_\Omega G dP \equiv \langle G \rangle
        系综理论给出微观态与宏观态性质之间联系的基础,而一个真正联系宏观量与微观量的公式为 Boltzmann 的熵公式,即
S=k_{B}In\Omega
这里 k_B Boltzmann 常数(在不引起歧义的情况下,有时忽略下标B , \Omega 为微观状态数。

微正则系综与等概率原理

        统计力学中,除了遍历性假设,另一个重要的基本假设为等概率原理,其表述为:对于一个固定能量E、粒子数NV的热力学宏观平衡系统,其达到每个微观态的概率是相同的。这里的系统被称为微正则系综,其微观状态数为
\Omega = \Omega(N, E, V) = \Sigma_\nu1
        这里 \{v\} 表示微观态的集合。但实际上,一个系统的能量实际上并不是完全固定的,其实际 上处于区间 (E, E + dE)中。在以上的框架下,微正则系综中一个微观态出现的概率为
P_\nu = \frac{1}{\Omega}
        这里需要条件能量E \in (E, dE) 根据 Boltzmann 公式,有
S = k \ln \Omega(N, V, E)
        因此结合热力学基本公式我们有
\beta = \frac{\partial \ln \Omega}{\partial E}\Bigg|_{V,N}
\beta{p} = \frac{\partial \ln \Omega}{\partial V}\Bigg|_{E,N}
\beta\mu = -\frac{\partial \ln \Omega}{\partial N}\Bigg|_{V,E}
这里定义了 \beta \equiv \frac{1}{kT}
        接下来我们用理想气体的例子来说明。定义能量处于 (0 , E ) 的总的微观状态数为 Φ( E )
因此我们有
\Omega(E) = \Phi'(E)
量子力学中,理想气体可以认为有 N 个处于势
V(x, y, z) = \begin{cases} 0, & \text{if } 0 < x, y, z < a \\ \infty, & \text{otherwise} \end{cases}
的粒子。量子力学给出
\epsilon_{n_x,n_y,n_z} = \frac{\pi^2\hbar^2}{2m a^2}(n_x^2 + n_y^2 + n_z^2)
和能量
\epsilon =\sum_{j=1}^{3N} \epsilon_i=\frac{\pi^2\hbar^2}{2ma^2} \sum_{j=1}^{3N} n_j^2
微观态集合
\{ \nu \} = \{ n_j \}_{j=1}^{3N}
Schrödinger 方程给出,且 n_j\in Z^{+}。因此有
\Phi(E) = \sum_{\epsilon \leq E} 1 \rightarrow{\int \cdot \cdot \cdot \int } _{\quad n_1^2 + \cdots + n_{3N}^2 \leq \frac{2ma^2E}{\pi^2\hbar^2} }\prod _{j=1}^{3N} dn_j
        这里由于宏观系统的能量量级远远大于微观态分割,因此可以把求和转化为积分。根据3N
球的体积公式
V_{3N} = \frac{\pi^{3N/2}}{\Gamma (3N/2)} R^{3N}
        其中 Γ( x ) 定义为
\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt
故我们可以计算上述积分为
\Phi(E) = \frac{1}{​{2}^{3N}{N!}} \frac{\pi^{3N/2}}{(3N/2)!} \left( \frac{2ma^2E}{\pi^2\bar{h}^2} \right)^{3N/2}
其中N!来自于粒子的全同性。这里我们利用了以下事实:微观粒子态的个数远远大于微观粒子数,因此相同微观粒子占据同一微观态的概率远远小于 1 且\frac{3}{2}N + 1 \approx \frac{3}{2}N . 故能量在 (E, E + dE)的微观态数目为
\Omega(E) = \frac{1}{​{2}^{3N}{N!}} \frac{\pi^{3N/2}}{(3N/2)!} \left( \frac{2ma^2E}{\pi^2\bar{h}^2} \right)^{3N/2}E^{3N/2-1}dE
容易验证,\Phi (E)大致量级为 (10^{14})^N .
\ln \Omega = \frac{3N}{2} \ln E + \ln \frac{dE}{E} + N \ln V + f(V)
这里 f ( V ) 是某个和 V 有关的函数。故根据之前的公式,我们有
E = \frac{3}{2} N kT\\p = \frac{NkT}{V}
微正则系综给出了孤立体统的统计方法,但由于能量固定的系统并不方便研究,故下节中将引入正则系综

N维球体积(拓展)

在此之前,我们先给出 N 维球体积的证明。记N维球体积为I_N,其正比于R^N,设
V_N = C_N R^N
则表面积S_N 满足
S_N = N C_N R^{N-1}
考虑积分
I_N \equiv \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} e^{-(x_1^2 + x_2^2 + \dots + x_N^2)} \,dx_1 \,dx_2 \, \dots \,dx_N = \pi^{N/2}
并且有
I_N = N C_N \int_{0}^{\infty} dr \, r^{N-1} e^{-r^2} = \frac{N}{2} C_N \Gamma\left(\frac{N}{2}\right)
故得证。

參考:

苏禹<<统计力学>>
(此讲义为本人于 2021 年春季参加中国科学技术大学化学与材料科学学院《统计力学》课
程整理的课程笔记,仅供参考)
普通物理学网络课程(第五章、第六章、第十二章、第十三章、第十四章)
  • 26
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值