積分:
1.
解:令
求有點難,求呢?
用圓映射到直角座標(不變性)
換元法是挺連鎖法則的,那怕是多元的
大致是這樣子,記得題目是求
2.
解:分部積分
原式
由微分關係
向量:
3. 証明三角形的幾何中心、中綫用兩邊找出
解:物理上的重心不一定是幾何中心,但用幾何中心作重要依據
三角形是2d的(二維的),
故任意非綫性相關的兩條直綫(比如三角形的任意兩邊)可得出結論
計算出關係式即可証
4. 向量証明一下五點同圓(1.要用極限 2.先証四點同圓,不然降點為三點同圓或者兩點同圓)
著名几何题“五点共圆”怎么证?李永乐老师讲几何证明和计算机辅助演示_哔哩哔哩_bilibili
ODE:
5. ,k,c,q是常數,求y
挺經典的物理模型
由簡單模型的(齊次模型)開始解
1.
2.
分離變量法
積分即可,
不定積分的要加常數!!!
不定積分的要加常數!!!
不定積分的要加常數!!!
3.
其中,最簡單的方法,是工程師提出的特徵分程(Yale物理公開課)
令
求p=求y
二元一次方程有三個結果(判別式),
(1)兩個不相同的實根
(2)兩個相同的實根!!!
(3)一對共軛複根!!!
其中(1)、(3)(注出就好)分別代入即可,
即
(2)是
(A,B是常數)
(1)、(2)、(3)的通解都表示出兩個綫性無關的解的綫性組合
的特解是
特解+齊次模型的通解=非齊次模型的解
工作
以後要搞一些課程筆記,為了好好保存,
把原先的分類專欗的物理和數學改成考研數學攻略電動力學
現在有上機課有數學實驗、微分方程數值解