用考研數學攻略考研用的電動力學_1.數學入門(題目1答案)

本文探讨了解决积分难题的方法,如换元法和分部积分,以及如何应用在物理模型和几何证明中,如五点共圆问题。同时涉及微分方程的解法,包括特征分程和二元一次方程的解,强调了在考研数学中的实际应用和课程笔记整理。
摘要由CSDN通过智能技术生成

積分:

1.  \int e^{x^2}dx

解:令I=\int e^{x^2}dx

I有點難,求I^2呢?

I^2\\=(\int e^{x^2}dx)(\int e^{y^2}dy)\\=\int \int e^{x^2+y^2}dxdy

用圓映射到直角座標(不變性)

x^2+y^2=r^2 \\x=rcos\theta \\y=rsin\theta

I^2\\=\int \int e^{x^2+y^2}dxdy\\=\int \int e^{r^2}\begin{vmatrix} \frac{\partial x}{\partial r} &\frac{\partial x }{\partial \theta } \\ \frac{\partial y}{\partial r} &\frac{\partial y }{\partial \theta } \end{vmatrix}drd\theta

換元法是挺連鎖法則的,那怕是多元的

I^2\\=\int \int e^{r^2}rdrd\theta \\ =\frac{\theta}{2} \int e^{r^2}d{r^2}

大致是這樣子,記得題目是求I(x)

2. \int x*arctan(x)dx

解:分部積分

原式

=\int x*arctan(x)dx\\=\int \frac{1}{2}arctan(x)d{x^2}\\ =\frac{1}{2}arctan(x)*{x^2}-\int \frac{x^2}{2}d(arctan(x))

由微分關係

darctan(x)=\frac{1}{1+x^2}dx

向量:

3. 証明三角形的幾何中心、中綫用兩邊找出

解:物理上的重心不一定是幾何中心,但用幾何中心作重要依據

三角形是2d的(二維的),

故任意非綫性相關的兩條直綫(比如三角形的任意兩邊)可得出結論

計算出關係式即可証

4. 向量証明一下五點同圓(1.要用極限  2.先証四點同圓,不然降點為三點同圓或者兩點同圓)

著名几何题“五点共圆”怎么证?李永乐老师讲几何证明和计算机辅助演示_哔哩哔哩_bilibili

ODE:

5. \frac{\mathrm{d^2}y }{\mathrm{d} x^2}+k\frac{\mathrm{d} y}{\mathrm{d} x}+cy=qx,y=y(x),k,c,q是常數,求y

挺經典的物理模型

由簡單模型的f(x)=0(齊次模型)開始解

1.cy=0

=>y=0

2.k\frac{\mathrm{dy} }{\mathrm{d} x}+cy=0

分離變量法

\frac{dy}{y}=-\frac{c}{k}dx

積分即可,

不定積分的要加常數!!!

不定積分的要加常數!!!

不定積分的要加常數!!!

3.\frac{\mathrm{d^2}y }{\mathrm{d} x^2}+k\frac{\mathrm{d} y}{\mathrm{d} x}+cy=0

其中,最簡單的方法,是工程師提出的特徵分程(Yale物理公開課)

y=y(x)=e^{px}

=>p^2+kp+c=0

求p=求y

p=\frac{-k\pm \sqrt{k^2-4c}}{2}

二元一次方程有三個結果(判別式),

(1)兩個不相同的實根

(2)兩個相同的實根!!!

(3)一對共軛複根!!!

其中(1)、(3)(注出i=\sqrt{-1}就好)分別代入即可,

y(x)=Ae^{p_1x}+Be^{p_2x}

(2)是

y=(A+Bx)e^{(-kx)}(A,B是常數)

(1)、(2)、(3)的通解都表示出兩個綫性無關的解的綫性組合

\frac{\mathrm{d^2}y }{\mathrm{d} x^2}+k\frac{\mathrm{d} y}{\mathrm{d} x}+cy=qx的特解是y=\frac{q}{c}x

特解+齊次模型的通解=非齊次模型的解

工作

以後要搞一些課程筆記,為了好好保存,

把原先的分類專欗的物理和數學改成考研數學攻略電動力學

現在有上機課有數學實驗、微分方程數值解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值